Raymundo Antonio González Segura
/ Categorías: Física Aplicada

An Efficient Growth Pattern Algorithm (GrowPAL) for Cluster Structure Prediction.

Resumen:

Identifying the lowest energy isomers in large clusters is a major challenge. Here, we introduce the Growth Pattern Algorithm (GrowPAL), a new approach that generates initial seeds composed of n+1 atoms from the system with n atoms through an interstitial-type addition (I-type) mechanism. We evaluated the effectiveness of GrowPAL on Lennard-Jones (LJ) clusters with up to n = 80 atoms, verifying the algorithm’s ability to find challenging minima such as LJ38 and the partially icosahedral LJ69 with fewer optimizations than existing methods. In addition, we discuss the advantages and limitations of GrowPAL using our deconstruction scheme, which identifies “forebears” structures to study growth pathways. Having evaluated the strengths and weaknesses of GrowPAL, we employed it to explore Sutton-Chen clusters containing 5 to 80 atoms, uncovering three new lowest energy forms. We then applied GrowPAL to boron clusters containing 8 to 15 atoms, successfully identifying all reported minima. Overall, GrowPAL offers a practical solution for efficiently identifying global minima in hierarchical systems, thereby reducing computational costs. 

Autor:

  • José Gabriel Merino Hernández 

https://doi.org/10.1021/acs.jctc.4c00365

Artículo anterior Protecting TiS3 Photoanodes for Water Splitting in Alkaline Media by TiO2 Coatings.
Siguiente artículo Fungal community dynamics on limestone at the Chichén Itzá archaeological site in Mexico driven by protective treatments.
Print
96 Califica este artículo:
Sin calificación
Please login or register to post comments.
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero
Ciudad de México, C.P. 07360
Apartado Postal: 14-740, 07000 Ciudad de México

Tel. +52 (55) 5747 3800

Cinvestav © 2025
05/03/2025 12:40:47 p. m.