Raymundo Antonio González Segura

Fungal community dynamics on limestone at the Chichén Itzá archaeological site in Mexico driven by protective treatments.

Resumen:

Microorganisms naturally colonize rock-based materials in outdoor environments, thereby contributing to their degradation. Fungi, especially in tropical environments with abundant water and favorable temperatures, play a significant role in biodegradation. However, many aspects of the microorganism-stone interaction, including fungal colonization dynamics and the impact of treatment applications, remain unclear. This study conducted a four-year in-situ evaluation of fungal community dynamics on limestone surfaces in the Temple of the Warriors at the Chichén Itzá archaeological site in Mexico, focusing on cleaning and treatment using nanoparticles (NPs). These NPs included zinc oxide (ZnO) and CaZn2(OH)6·2H2O (CZ)-based NPs synthesized via sol-gel (CZ-SG) and mechanochemical methods (CZ-MC), as well as CZ/Ca(OH)2-based products (CZ:Ca-SG). The microbial colonization cover was assessed using colorimetric measurements, and the surface was sampled for fungal community isolation and identification. The results demonstrated significant impacts of cleaning and nanomaterial applications on cultivable fungal communities (melanized filamentous, hyaline, and microcolonial fungi), altering composition, dynamics, and stone surface coloration. In particular, ZnO NPs caused 50 % decline in fungal species and individuals, whereas CZ:Ca-SG NPs displaced most species, indicating effective inhibition of the cultivable fungal community. Microcolonial fungi (MCF), known for their tolerance to withstand harsh environmental conditions, were the only fungal group found in the CZ:Ca-SG treatment. In contrast, CZ-SG and CZ-MC increased the abundance of melanized species, resulting in darkening and reduced color intensity. This study highlights the importance of microcolonial fungi that are tolerant to cleaning and coating procedures in the preservation of stone cultural heritage. These findings enhance our understanding of fungal colonization dynamics following treatment and provide valuable insights into the challenges associated with preserving stone materials in tropical environments. 

Autores:

  • Patricia Quintana Owen 

https://doi.org/10.1016/j.scitotenv.2023.167563

Artículo anterior An Efficient Growth Pattern Algorithm (GrowPAL) for Cluster Structure Prediction.
Siguiente artículo Reconoce Instituto Mexicano de la Propiedad Industrial a dispositivo de bioimpresión 3d
Print
300 Califica este artículo:
Sin calificación
Please login or register to post comments.
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero
Ciudad de México, C.P. 07360
Apartado Postal: 14-740, 07000 Ciudad de México

Tel. +52 (55) 5747 3800

Cinvestav © 2025
05/03/2025 12:40:47 p. m.