M. en C. José Luis Flores Garcilazo

Time Series Forecasting with Missing Data Using Generative Adversarial Networks and Bayesian Inference

This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative Adversarial Networks (GANs) and Bayesian inference. The framework utilizes a Conditional GAN (C-GAN) to realistically impute missing values in the time series data. Subsequently, Bayesian inference is employed to quantify the uncertainty associated with the forecasts due to the missing data. This combined approach improves the robustness and reliability of forecasting compared to traditional methods. The effectiveness of our proposed method is evaluated on a real-world dataset of air pollution data from Mexico City. The results demonstrate the framework’s capability to handle missing data and achieve improved forecasting accuracy.

Keywords
Deep Learning, Time series; Missing Data; Neural Networks; GAN; Bayesian.

Autores:

Xiaoou Li.

Revista

MDPI.

DOI:10.3390/info15040222.

Print
792 Califica este artículo:
Sin calificación
Please login or register to post comments.

Oferta académica

Desde marzo de 2003, el Departamento de Farmacobiología imparte los programas de Maestría y Doctorado en Neurofarmacología y Terapéutica Experimental. Nuestras alumnas y alumnos reciben una formación académica de calidad mediante cursos teórico/prácticos especializados y entrenamiento personalizado en su formación como futuras y futuros investigadores.

Investigación

El Departamento de Farmacobiología estudia los efectos de los fármacos para entender procesos que subyacen a enfermedades y condiciones relevantes y su posible terapia.

Cinvestav © 2025
07/11/2023 04:31:18 p. m.