Kinematic Tripod (K3P): A New Kinematic Algorithm for Gait Pattern Generation
Leobardo Pérez Martínez
/ Categorías: Unidad Tamaulipas

Kinematic Tripod (K3P): A New Kinematic Algorithm for Gait Pattern Generation

Daniel Soto-Guerrero, José Gabriel Ramírez-Torres and Eduardo Rodriguez-Tello

Abstract

Insects are good examples of ground locomotion because they can adapt their gait pattern to propel them in any direction, over uneven terrain, in a stable manner. Nevertheless, replicating such locomotion skills to a legged robot is not a straightforward task. Different approaches have been proposed to synthesize the gait patterns for these robots; each approach exhibits different restrictions, advantages, and priorities. For the purpose of this document, we have classified gait pattern generators for multi-legged robots into three categories: precomputed, heuristic, and bio-inspired approaches. Precomputed approaches rely on a set of precalculated motion patterns obtained from geometric and/or kinematic models that are performed repeatedly whenever necessary and that cannot be modified on-the-fly to adapt to the terrain changes. On the other hand, heuristic and bio-inspired approaches offer on-line adaptability, but parameter-tuning and heading control can be difficult. In this document, we present the K3P algorithm, a real-time kinematic gait pattern generator conceived to command a legged robot. In contrast to other approaches, K3P enables the robot to adapt its gait to follow an arbitrary trajectory, at an arbitrary speed, over uneven terrain. No precomputed motions for the legs are required; instead, K3P modifies the motion of all mechanical joints to propel the body of the robot in the desired direction, maintaining a tripod stability at all times. In this paper, all the specific details of the aforementioned algorithm are presented, as well as different simulation results that validate its characteristics.

https://doi.org/10.3390/app14062564

Artículo anterior Proyectos de investigación
Siguiente artículo A service mesh approach to integrate processing patterns into microservices applications
Print
147 Califica este artículo:
Sin calificación
Please login or register to post comments.
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero
Ciudad de México, C.P. 07360
Apartado Postal: 14-740, 07000 Ciudad de México

Tel. +52 (55) 5747 3800

Cinvestav © 2025
05/03/2025 12:40:47 p. m.