Tuning the Charge Transfer in MWCNTs via the Incorporation of ZnONPs and AgNPs: The Role of Carbon Binding with ZnO/Ag Heterostructures in Reactive Species Formation
Gamiño-Barocio, I.; Vázquez-Vázquez, E.F.; Hernández-Rodríguez, Y.M.; Cigarroa-Mayorga, O.E.
Abstract
In this research, multi-walled carbon nanotubes (MWCNTs) were decorated with two kinds of nanostructures, (1) silver nanoparticles (AgNPs) and (2) zinc oxide–silver nano-heterostructures (ZnO/Ag-NHs), via an accessible chemical coprecipitation method assisted with ultrasonic radiation. The high-resolution transmission electron microscopy analysis demonstrated the successful decoration of MWCNTs with the nanostructures with a diameter size of 11 nm ± 2 nm and 46 nm ± 5 nm for the AgNPs and the ZnO/Ag-NHs, respectively. The reactive species were promoted in an aqueous medium assisted with UV irradiation on the functionalized MWCNT. UV-Vis spectroscopy demonstrated that production of the reactive species density increased 4.07 times, promoted by the single MWCNT after the functionalization. X-ray photoelectron spectroscopy showed that Sp2 hybridization in carbon atoms of MWCNTs participates in the binding of AgNPs and ZnO/Ag-NH decoration and thus participates in the formation of reactive species in an aqueous medium, as is the case for cancer cells.
Keywords: silver nanoparticles; zinc oxide–silver heterostructures; ultrasonic-assisted synthesis; methylene blue; nanocomposite materials
https://doi.org/10.3390/nano14181517