M. en C. José Luis Flores Garcilazo

Multiobjective Multitasking Optimization With Decomposition-Based Transfer Selection.

Multiobjective multitasking optimization (MTO) needs to solve a set of multiobjective optimization problems simultaneously, and tries to speed up their solution by transferring useful search experiences across tasks. However, the quality of transfer solutions will significantly impact the transfer effect, which may even deteriorate the optimization performance with an improper selection of transfer solutions. To alleviate this issue, this article suggests a new multiobjective multitasking evolutionary algorithm (MMTEA) with decomposition-based transfer selection, called MMTEA-DTS. In this algorithm, all tasks are first decomposed into a set of subproblems, and then the transfer potential of each solution can be quantified based on the performance improvement ratio of its associated subproblem. Only high-potential solutions are selected to promote knowledge transfer. Moreover, to diversify the transfer of search experiences, a hybrid transfer evolution method is designed in this article. In this way, more diverse search experiences are transferred from high-potential solutions across different tasks to speed up their convergence. Three well-known benchmark suites suggested in the competition of evolutionary MTO and one real-world problem suite are used to verify the effectiveness of MMTEA-DTS. The experiments validate its advantages in solving most of the test problems when compared to five recently proposed MMTEAs.

Keywords
Decomposition, Knowledge Transfer, Multiobjective Optimization, Multiobjective Multitasking Optimization (MTO).

Autores:

Carlos Artemio Coello Coello.

Revista

IEEE Transactions on Cybernetics.

DOI: 10.1109/TCYB.2023.3266241.

Print
915 Califica este artículo:
Sin calificación
Please login or register to post comments.

Oferta académica

Los programas de Maestría y Doctorado en Ciencias en la especialidad de Investigaciones Educativas del DIE se encuentran en la clasificación de competencia internacional en el Sistema Nacional de Posgrados del CONACyT.

Investigación

En el Departamento de Investigaciones Educativas (DIE) se indaga sobre la realidad educativa mexicana en el contexto global, desde múltiples perspectivas disciplinarias, por medio de estudios empíricos de alto rigor metodológico y en diálogo permanente con enfoques teóricos diversos.

Cinvestav © 2025
15/11/2023 04:11:42 p. m.