M. en C. José Luis Flores Garcilazo

Improving Multi-Objective Evolutionary Algorithms Using Grammatical Evolution

Multi-objective evolutionary algorithms (MOEAs) have become an effective choice to solve multi-objective optimization problems (MOPs). However, it is well known that Pareto dominance-based MOEAs struggle in MOPs with four or more objective functions due to a lack of selection pressure in high dimensional spaces. The main choices for dealing with such problems are decomposition-based and indicator-based MOEAs. In this work, we propose the use of Grammatical Evolution (an evolutionary computation search technique) to generate functions that can improve decomposition-based and indicator-based MOEAs. Namely, we propose a methodology to generate new scalarizing functions, which are known to have a great impact in the performance of decomposition-based MOEAs and in some indicator-based MOEAs. Additionally, we propose another methodology to generate hypervolume approximations, since the hypervolume is a popular performance indicator used not only in indicator-based MOEAs but also to assess performance of MOEAs. Using our first methodology, we generate two new scalarizing functions and provide their corresponding experimental validation to show that they exhibit a competitive behavior when compared against some well-known scalarizing functions such as ASF, PBI and the Tchebycheff scalarizing function. Using our second methodology, we produce 4 different hypervolume approximations and compare their performance against the Monte Carlo method and against two other state-of-the-art hypervolume approximations. The experimental results show that our functions exhibit a good compromise in terms of quality and execution time.

Keywords
Grammatical evolution, Genetic programming, Evolutionary Algorithms, Multi-objective optimization.

Autores:

Carlos Artemio Coello Coello.

Revista

Swarm and Evolutionary Computation.

DOI: https://doi.org/10.1016/j.swevo.2023.101434.

Print
991 Califica este artículo:
Sin calificación
Please login or register to post comments.

Oferta académica

Los programas de Maestría y Doctorado en Ciencias en la especialidad de Investigaciones Educativas del DIE se encuentran en la clasificación de competencia internacional en el Sistema Nacional de Posgrados del CONACyT.

Investigación

En el Departamento de Investigaciones Educativas (DIE) se indaga sobre la realidad educativa mexicana en el contexto global, desde múltiples perspectivas disciplinarias, por medio de estudios empíricos de alto rigor metodológico y en diálogo permanente con enfoques teóricos diversos.

Cinvestav © 2025
15/11/2023 04:11:42 p. m.