Functional arrangement and temporal analyses of the coastal fish community of the southern Gulf of Mexico
Aguilar-Medrano, E., Vega-Cendejas, M. E.
Mar. Biodivers. 54, 36 (2024)
https://doi.org/10.1007/s12526-024-01429-5
Abstract
The southern Gulf of Mexico presents a wide diversity of habitats and fish, which makes it important for its natural resources, and the expansion of the fishing, port, and oil industry. In the present study, physicochemical parameters, and the biomass, density, and functional arrangement of the fish community were contrasted over 32 stations and three years (2011–2013) to establish a baseline and assess constraints in the ecosystem diversity and resilience. Were recorded 102 species classified into 14 functional groups (FGs) and four functional independent species (FIS). The species with the greatest effect on the ecosystem due to their biomass and density are three benthic carnivorous species Ariopsis felis, Eucinostomus gula, and Syacium gunteri, and the most representative due to their great length are two benthopelagic carnivorous species, Trichiurus lepturus and Fistularia petimba (~ 234–200 cm total length). There was no spatial or temporal variation related to the physicochemical variables, biomass, density, and functional arrangement and due to the functional diversity and redundancy found, we can conclude that the southern Gulf of Mexico is a stable ecosystem and thus might be resilient. We recommend monitoring seven FGs and four FIS to ensure the balance between the redundant and unique functions in the ecosystem is maintained: ZoNS and ZoNM representing the most redundant functions; ZoS, ZoM, ZS, and NM since they present highly specific diets; PZoM is the only FG including plant matter in their diet; PZoS which include plant matter, and ZoZM, ZM, and NS because of their unique function in the system.