Publicaciones


 

Reduced-quaternion inframonogenic functions on the ball

 

Resumen

A function from a domain in to the quaternions is said to be inframonogenic if
, where
. All inframonogenic functions are biharmonic. In the context of functions taking values in the reduced quaternions, we show that the inframonogenic homogeneous polynomials of degree form a subspace of dimension . We use the homogeneous polynomials to construct an explicit, computable orthogonal basis for the Hilbert space of square-integrable inframonogenic functions defined in the ball in .

 

Autores

  • C. Álvarez-Peña
  • J. Morais
  • R. Michael Porter

 

Revista Math. Meth. Appl. Sci.

https://doi.org/10.1002/mma.9600

Print
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero
Ciudad de México, C.P. 07360
Apartado Postal: 14-740, 07000 Ciudad de México

Tel. +52 (55) 5747 3800

Cinvestav © 2025
23/09/2024 02:30:42 p. m.