Modeling the Terminal Velocity of Rising Electrocharged Microbubbles

Autores: Roberto Pérez Garibay, Francisco Andrés Acosta González

https://doi.org/10.3390/surfaces7040064

Revista:
Surfaces

Resumen:
The generation of electrocharged microbubbles is very important for several separation processes (e.g., water treatment, paper industry, and mineral processing). However, their rising terminal velocities are not fully understood. This work presents a laboratory study of the terminal velocity of single microbubbles (bubble diameter (𝐷𝑏) < 100 µm) rising in stagnant aqueous solutions with different pH levels (from 2 to 12) and reagent types (frother and collector; 30 ppm). The measurements were compared with the respective predicted velocities computed from the Stokes and Hadamard–Rybczynski models. It was found that the terminal velocities of electrocharged microbubbles were larger than the respective predictions from the Stokes equation. A regression equation was proposed to predict the terminal velocity as a function of the bubble diameter, which showed considerable dispersion depending on the type of reagent adsorbed on its surface, the concentration of these reagents, and the physical characteristics that the boundary layer acquires by modifying the zeta potential of the microbubbles; this effect has not yet been addressed in the literature.

Artículo anterior Premio IMPI a la innovación mexicana 2024
Siguiente artículo Ajolotes y su capacidad regenerativa
Print
812 Califica este artículo:
Sin calificación
Please login or register to post comments.
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508,
Col. San Pedro Zacatenco,
Alcaldía Gustavo A. Madero,
Ciudad de México, Código Postal 07360

Tel. +52 55 5747 3800

Cinvestav © 2025
02/10/2025 01:21:03 p. m.