Publicaciones


 

Dynamic Neural Network-Based Adaptive Tracking Control for an Autonomous Underwater Vehicle Subject to Modeling and Parametric Uncertainties

 

This research presents a way to improve the autonomous maneuvering capability of a four-degrees-of-freedom (4DOF) autonomous underwater vehicle (AUV) to perform trajectory tracking tasks in a disturbed underwater environment. This study considers four second-order input-affine nonlinear equations for the translational (x,y,z) and rotational (heading) dynamics of a real AUV subject to hydrodynamic parameter uncertainties (added mass and damping coefficients), unknown damping dynamics, and external disturbances. We proposed an identification-control scheme for each dynamic named Dynamic Neural Control System (DNCS) as a combination of an adaptive neural controller based on nonparametric identification of the effect of unknown dynamics and external disturbances, and on parametric estimation of the added mass dependent input gain. Several numerical simulations validate the satisfactory performance of the proposed DNCS tracking reference trajectories in comparison with a conventional feedback controller with no adaptive compensation. Some graphics showing dynamic approximation of the lumped disturbance as well as estimation of the parametric uncertainty are depicted, validating effective operation of the proposed DNCS when the system is almost completely unknown. 

Autores: 

Filiberto Muñoz
Jorge Said Cervantes Rojas
Sergio Salazar Cruz
 

Revista: Applied Sciences

https://doi.org/10.3390/app11062797 
 

Print
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508,
Col. San Pedro Zacatenco,
Alcaldía Gustavo A. Madero,
Ciudad de México, Código Postal 07360

Tel. +52 55 5747 3800

Cinvestav © 2025
23/09/2024 02:28:05 p. m.