Publicaciones


 

A standardized framework for circulating blood proteomics

Artículo

 

Te invitamos a leer el artículo "A standardized framework for circulating blood proteomics" publicado en Nature Genetics, a cargo del profesor investigador Dr. Robert Winkler y su equipo de trabajo de la UGA.

Autores: Xue Cai / Philipp E. Geyer / Yasset Perez-Riverol / Gilbert S. Omenn / Lianhua Dong / Robert Winkler / Sara Ahadi, Philip Lössl / Xiaobo Yu / Cheng Chang / Markus Ralser / Connie R. Jimenez / Yang Zhao, Yu-Ju Chen / Terence C. W. Poon / Nicolai Bache / Leming Shi / Xinhua Dai, Ziyue Wang / Yi Zhu / Xiang Fang / Jochen M. Schwenk / Jennifer E. Van Eyk / Uwe Völker / Tiannan Guo

  1. Hangzhou First People’s Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou,China

  2. Westlake Laboratory of Life Sciences and Biomedicine, Westlake Center for Intelligent Proteomics, Hangzhou, China

  3. Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China

  4. ions.bio GmbH, Martinsried, Germany

  5. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK 

  6. Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA

  7. Internal Medicine, University of Michigan, Ann Arbor, MI, USA

  8. Human Genetics, University of Michigan, Ann Arbor, MI, USA

  9. Environmental Health, University of Michigan, Ann Arbor, MI, USA

  10. Center for Advanced Measurement Science, National

  11. Institute of Metrology, Beijing, China

  12. Advanced Genomics Unit, Center for Research and Advanced Studies, Irapuato, Mexico

  13. Alkahest, Inc., San Carlos, CA, USA

  14. Absea Biotechnology GmbH, Berlin, Germany

  15. State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences—Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China  

  16. Department of Biochemistry, Charité–Universitätsmedizin Berlin, Berlin, Germany

  17. OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

  18. Cancer Center Amsterdam, Amsterdam, the Netherlands

  19. Institute of Chemistry, Academia Sinica, Taipei, Taiwan

  20. Pilot Laboratory, MOE Frontier Science Centre for Precision Oncology, Centre for Precision Medicine Research and Training

  21. Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China

  22. Evosep Biosystems, Odense, Denmark

  23. State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China

  24. International Human Phenome Institutes (Shanghai), Shanghai, China

  25. SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden

  26. Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA

  27. Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany

  28. German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany

Felicitamos al estudiantado y profesorado que contribuyeron en esta investigación por su arduo trabajo.

Abstract:

The circulating blood proteome holds immense potential for biomarker discovery and understanding disease mechanisms. Notable advances in mass spectrometry and affinity-based technologies have been made, but data integration across studies and platforms is hindered by the absence of unified analytical standards. This limitation impedes comprehensive exploration of human biology across diverse phenotypes and cohorts as well as the translation of findings into clinical applications. The disparities between datasets, stemming from a combination of factors related to differences in sample collection, pre-analytical handling, measurement methods and instrumentation, further complicate data integration. In this Perspective, we outline key challenges in blood-based proteomics and propose actionable strategies. Central to our recommendations are high-quality, technology-agnostic reference samples, which can bridge disparate datasets and enable robust cross-study comparisons. By fostering interconnected investigations across proteomic technologies, blood sample collections, clinical phenotypes and different populations, these references will accelerate the field and its translation.


Enlace de consulta

Print
Cinvestav © 2025
24/02/2025 10:04:30 a. m.