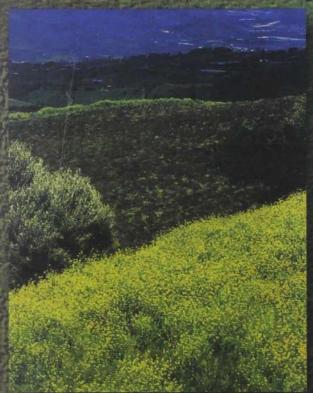
AVANCE Y PERSPECTIVA Organode difusion del Centrodello vestigación y de Estudios Avanzados del 1 P. N.

Volumen 21 Marzo-abril de 2002 México ISSN 0185-1411 \$ 25 pesos Aguas subterráneas de la península de Yucatán



LA UNIDAD DE BIOTECNOLOGÍA E INGENIERÍA GENÉTICA DE PLANTAS

Ofrece:

CINVESTAV

Maestria y Doctorado en Biotecnología de Plantas

Maestría

Doctorado directo (después de la licenciatura)

Doctorado tradicional (después de la maestría)

Examen de admisió enero y julio

Coordinación Académica

Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Irapuato Km. 9.6 Libramiento Norte carretera Irapuato - León, Apdo. Postal 629, 36500 Irapuato, Gto., México Tel: (462) 623 9600 y 623 9606, FAX (462) 624 5849

E mail: coordina@ira.cinvestav.mx

Centro de Investigación y de Estudios Avanzados del IPN CINVESTAV

DIRECTOR GENERAL
Adolfo Martinez Palomo
SECRETARIO ACADÉMICO
René ASOMOZA
SECRETARIO DE PLANEACIÓN
Marco Antonio Meraz
SECRETARIO ADMINISTRATIVO
Mario Alberto Osorio Alarcón

AVANCE Y PERSPECTIVA DIRECTOR EDITORIAL Miguel Angel Pérez Angón EDITORA ASOCIADA Gloria Novoa de Vitagliano COORDINACIÓN EDITORIAL Martha Aldape de Navarro DISEÑO Y CUIDADO DE LA EDICIÓN Rosario Morales Alvarez FOTOGRAFIA Carlos Villavicencio Sección Fotografía del CINVESTAV CAPTURA Josefina Miranda López María Eugenia López Rivera Maria Gabriela Reyna López

CONSEJO EDITORIAL

J. Victor Calderón Salinas
Bioquimica
Luis Capurro Filograsso
UNIDAD MÉRIDA
Marcelino Cereijido
FISIOLOGÍA
María de Ibarrola Nicolín
INVESTIGACIONES EDUCATIVAS
Eugenio Frixione
BIOLOGÍA CELULAR
Jesús González
UNIDAD QUERÉTARO

Luis Herrera Estrella

UNIDAD IRAPUATO

Luis Moreno Armella MATEMÁTICA EDUCATIVA

Angeles Paz Sandoval

QUÍMICA

Gabino Torres Vega

Física

Correo electrónico:

Tel. y Fax: 5747 37 46

Consulte nuestra página de Internet: http://www.cinvestav.mx/publicaciones

AVANCE Y PERSPECTIVA

SUMARIO

P	0	li	ï	77	C	1	2	ù

marzo-abril de 2002

- 67 El agua subterránea en el desarrollo regional de la peninsula de Yucatán Eduardo Batllori Sampedro y José Luis Febles Patrón
- 79 Materiales alternativos al cemento Pórtland José Iván Escalante García
- 89 Canales iónicos y su papel funcional en el espermatozoide Alfonso Vega Hernández, Claudia L. Treviño y Ricardo Félix

PERSPECTIVAS

- 97 La ciencia mexicana: planes que se conviertan en hechos Alfredo Herrera Estrella
- 101 Tres consecuencias del Proyecto Genoma Antonio R. Navarro y Jorge Estrella

NOTICIAS DEL CINVESTAV

- 109 Onésimo Hernández Lerma, Premio Nacional de Ciencias y Artes 2001
 110 Daniel Martínez Fong, jefe del Departamento de Fisiología, Biofísica y Neurociencias
 111 Alejandro Flores Nava, director de la Unidad Mérida
- 111 Alejandro Flores Nava, director de la Unidad Mérida Juan E. Ayón Beato, Premio Weizmann 2001

DIÁLOGOS

113 La física en tiempos de estío Carlos Chimal

ESPACIO ABIERTO

123 Ciencias interdependientes: física y medicina Michael S. Witherell

Portada: el acelerado desarrollo industrial y turístico de la península de Yucatán pone en peligro los depósitos de aguas subterráneas, que constituyen el principal abastecimiento del vital líquido en esta península.

Foto: M. Calderwood.

Avance y Perspectiva, órgano de difusión del Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV, es una publicación bimestral. El número correspondiente a marzo-abril de 2002, volumen 21, se terminó de imprimir en febrero de 2002. El tiraje consta de 8,000 ejemplares. Editor responsable: Miguel Angel Pérez Angón. Oficinas: Av. IPN No. 2508 esquina calzada Ticomán, apartado postal 14-740, 67000, México, D.F. Certificados de licitud del título No. 1728 y de contenido No. 1001 otorgados por la Comisión Calificadora de Publicaciones y Revistas Ilustradas de la Secretaria de Gobernación. Reserva de Título No. 577-85 otorgado por la Dirección General del Derecho de Autor de la Secretaria de Educación Pública. Publicación periódica: Registro No. PP09-0071, características 220221122, otorgado por el Servicio Postal Mexicano. Negativos, impresión y encuadernación: COMRAMSON, S.A. de C.V., Plaza Buena Vista No. 2 Desp. 209, 210 Col. Guerrero, México, D.F. Avance y Perspectiva publica artículos de divulgación y notas sobre avances científicos y tecnológicos. Los artículos firmados son responsabilidad de los autores. Las instrucciones para los autores que deseen enviar contribuciones para su publicación aparecen en el número enero-febrero del 2002 página 44. Se autoriza la reproducción parcial o total del material publicado en Avance y Perspectiva, siempre que se cite la fuente. Avance y Perspectiva se distribuye en forma gratuita a los miembros de la comunidad del CINVESTAV y a las instituciones de educación superior. Suscripción personal por un año: \$150.00

El mejor artículo publicado en publicado en

Avance y Perspectiva (AyP) invita a sus lectores y lectoras a participar en la selección del mejor artículo publicado en nuestra revista durante el año 2001 (volumen 20). Participar es fácil: sólo envíe un correo electrónico a la dirección avance@mail.cinvestav.mx con la referencia del artículo de su preferencia. Título del mensaje (subject). Si no recuerda la referencia completa, no importa, será suficiente cualquier información que pueda enviarnos en el cuerpo del correo, que nos permita identificar al artículo en cuestión. La votación se podrá realizar hasta el 31 de mayo de 2002. Sólo se contabilizará un voto por remitente. El resultado será publicado en el número correspondiente a julio-agosto de 2002. El ganador recibirá un reconocimiento por escrito. El perfil de la votación será considerado por el Consejo Editorial de Avance y Perspectiva como una sólida propuesta de contenido para los futuros números de nuestra revista.

Los lectores de AyP que deseen participar por vía telefónica, pueden enviar su mensaje al número de fax (52-55) 57 47 37 46.

El agua subterránea en el desarrollo regional de la península de Yucatán

Eduardo Batllori Sampedro y José Luis Febles Patrón

Impacto ambiental

La sobrevivencia humana depende de una gran variedad de recursos naturales. El aqua ciertamente es un buen ejemplo, el aire es otro importante así como los recursos energéticos. El agua posee propiedades únicas y esenciales para toda la vida en el planeta. Es un factor básico en el crecimiento de las comunidades naturales y la civilización humana. El estado de Yucatán carece de aguas superficiales, como los ríos, debido a la naturaleza cárstica de las rocas de la entidad; el agua de lluvia se infiltra rápidamente y desciende al manto freático, que constituye un acuífero de buena calidad. Esta agua subterránea viaja hacia la costa y aflora como agua superficial mediante manantiales para inundar las depresiones costeras que se mezclan con el aqua de mar en lagunas y ciénagas, al final de la temporada de lluvias y durante los vientos fríos del norte.

Una característica particular de la zona costera de Yucatán, relacionada con la descarga de aguas subterráneas, es la presencia de una capa geológica denominada "caliche" que confina al acuífero subterráneo, eleva el nível de agua hacia las tierras altas y lleva a una mayor profundidad las aguas saladas del fondo. La población yucateca tiene en las aguas subterráneas el principal abastecimiento de este vital líquido para satisfacer, en exceso, las necesidades de la población y sus actividades productivas. La explotación de este recurso no representa hasta ahora una amenaza seria en términos de sobreexplotación, ya que es muy

Los autores son investigadores del Departamento de Ecología Humana de la Unidad Mérida del Cinvestav. Dirección electrónica: batllori@mda.cinvestav.mx abundante. Sin embargo, las aguas subterráneas son muy vulnerables a la contaminación que proviene de las aguas residuales domésticas, municipales, agropecuarias e industriales, las cuales carecen de un eficiente sistema de tratamiento para su disposición, de acuerdo a las normas establecidas.

A pesar de que fue hace mucho tiempo cuando los antiguos griegos, en la voz de Hipócrates, advirtieron que las aguas contaminadas deberían ser hervidas o filtradas antes de consumirlas, en los inicios del siglo XXI muchas comunidades no reconocen cabalmente que el agua puede acarrear enfermedades, por lo que las aguas residuales contaminadas se siguen vertiendo sobre el aqua que consumimos. La tifoidea y el cólera son dos enfermedades bacterianas que son transmitidas por medio del agua, así como ciertos virus como la hepatitis y protozoarios que producen giardiasis. Un buen indicador de la contaminación de las aguas son las bacterias coliformes: su presencia indica un riesgo de contraer severas enfermedades por bacterias, virus y protozoarios. Es difícil exagerar la magnitud del reto. A pesar de que la información puede variar, existe consenso sobre los siguientes aspectos.

- (1) Las aguas contaminadas o pobremente tratadas afectan principalmente a los niños: en el mundo cerca de 5 millones de niños menores de 5 años mueren cada año por diarrea.
- (2) En los países en desarrollo, el 80% de las enfermedades se atribuyen al uso de aguas en mala calidad; tres de las enfermedades con mayor incidencia en Asia, Africa y Latinoamérica están relacionadas con el uso de agua contaminada.
- (3) En las zonas rurales de estos países, cerca del 60% de las familias carecen de agua limpia y el 85% carecen de una adecuada acción sanitaria. En la península de Yucatán existen niveles de deterioro de los recursos hídricos por diferentes vías de contaminación. A ello se añaden otros dos aspectos igualmente preocupantes: en primer término, el desarrollo acelerado de la actividad socioeconómica de la franja costera y de infraestructuras de todo tipo, vinculadas al turismo, a la pesca y otras actividades productivas y de servicios, con una tendencia en aumento a la transformación ambiental de las áreas tierra adentro cercanas a la costa. Como segundo aspecto, no menos importante que el primero,

se tiene el creciente desarrollo de las regiones que comprenden el sector primario, es decir las regiones frutícola, maicera, ganadera y henequenera, con especial atención en el área metropolitana, donde todo parece indicar que se comienzan a generar problemas ambientales muy serios.

El acelerado desarrollo en toda la península, tanto de la actividad turística, comercial, agrícola, así como de industrialización, hace pensar en escenarios futuros de alto impacto ambiental. Si se analiza que el recurso hídrico es un factor limitante para todo desarrollo socio-económico, vale la pena reflexionar que el estado de Yucatán sólo tiene una fuente de abasto de este recurso: el agua subterránea; además, aunque es explotada actualmente en alrededor del 5% de su volumen almacenado, es una fuente muy vulnerable y de alto riesgo de contaminación, aspectos ya evaluados localmente en determinadas regiones del estado. Asociado al agua, existe el deterioro de otros recursos naturales como los suelos, la vegetación originaria y la diversidad biológica, sin contar los daños que todo lo anterior provoca en el hombre.

Los programas de desarrollo en la península de Yucatán no han tomado en cuenta la relación sistémica que soporta la gran diversidad biológica de la región, así como las características de la roca calcárea sujeta a procesos de disolución cuyas expresiones más notables son los cenotes o lagos cársticos, sus suelos y la variabilidad social de las poblaciones humanas. Por lo anterior, las actividades socioeconómicas han tenido impacto en el ambiente natural y han producido un severo desequilibrio en estos ecosistemas tropicales. La distribución espacial de la población, según su estado nutricional infantil, muestra cómo la malnutrición se incrementa cuando la diversidad biológica disminuye y los individuos requieren más de productos externos sin tener los suficientes recursos económicos para acceder a ellos. La población puede llegar a ser muy sensible a los cambios sociales y ambientales, que pueden ser fatales para la población infantil y en mayor grado para las áreas de asentamientos que presentan una condición de extrema pobreza u ambientes degradados. En los últimos seis años se han realizado esfuerzos por parte de la Comisión Nacional del Agua para desarrollar programas regionales hidráulicos sobre el manejo de cuencas de cada una de las 13 Unidades Administrativas Hidráulicas en México¹. La responsabilidad de la puesta en marcha de cada programa regional corresponderá a los respectivos consejos de cuenca, recientemente creados. En diciembre de 1999 se

68

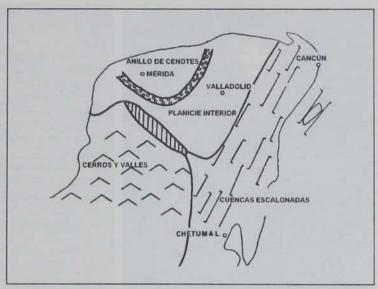


Figura 1. Zonas hidrogeológicas de la península de Yucatán.

formó el Consejo de Cuenca de la Península de Yucatán, que cuenta con una estructura amplia y multifacética donde se encuentran representados los principales organismos públicos, instituciones de investigación y universidades, usuarios y organizaciones no gubernamentales (ONG) de la península y del país; esto garantizaría una estrategia mancomunada que debiera traducirse en una unión de esfuerzos encaminados a la gestión integral de cuencas hidrológicas. En el interior de este consejo están representados, principalmente, los usuarios de agua subterránea (como los módulos de riego, cervecerías, embotelladoras) y los usuarios de las aguas superficiales costeras (pescadores, salineros, promotores de ecoturismo) en el estado de Yucatán.

Si bien en la región existen grandes cantidades de agua dulce subterránea susceptible de ser aprovechada y que ha favorecido un proceso de desarrollo a gran escala (turismo, agricultura de monocultivo, ganadería, pesca, manufactura, minería, silvicultura y extracción de petróleo), también existen amenazas a los ecosistemas terrestres, costeros y marinos, que sustentan la economía y los satisfactores de la población humana. De aquí que se requiera desarrollar visiones integrales con un alcance basado en la protección de los ecosistemas, el cuidado responsable y el manejo sustentable del recurso aqua,

como recomiendan los resultados de los trabajos realizados a finales de 2000 por la CNA, la Universidad de las Naciones Unidas y la Red Internacional sobre Agua, Medio Ambiente y Salud ².

Características hidrogeológicas

La península de Yucatán está dividida en cinco zonas hidrogeológicas: región costera, semicírculo de cenotes (noroeste del estado de Yucatán), planicie interior, cuencas escalonadas, cerros y valles (figura 1). Esta zonificación pone en una situación interesante a las regiones económicas y distritales, con relación a las acciones de planificación y política ambiental, pues identifica y clasifica áreas críticas de interés. Además de la región costera y el semicírculo de cenotes (antigua zona henequenera) existen también áreas de intenso uso humano que deben ser ordenadas para preservar el ambiente (como las cuencas escalonadas de Quintana Roo).

Fuera de los ríos Hondo, Champotón y Candelaria, la península de Yucatán carece de corrientes superficiales, particularmente en la porción norte. Hacia el sur, sólo se manifiesta un drenaje incipiente que desaparece en resumideros o en cuerpos de agua superficial o aguadas.

Así, gran parte de la precipitación pluvial se "evapotranspira" y el resto se infiltra al manto subterráneo a través de fracturas, oquedades y conductos cársticos de las calizas. Una vez que se integra al acuífero, el agua sigue diferentes trayectorias de flujo, controladas por el desarrollo o evolución del carst profundo¹. La descarga de esta agua se realiza por medio de manantiales y en forma difusa hacia el mar, alimentando a las ciénagas y lagunas costeras. El acuífero bajo la ciudad de Mérida contiene un lente de agua dulce de 40 m de espesor en promedio, el cual flota sobre agua salada. La zona de mezcla o interfase salina tiene 37 m de espesor (entre 28 a 65 m de profundidad) y está muy alterada debido a que ahí se descargan grandes cantidades de aguas residuales y pluviales. Lo anterior es importante si se considera la existencia de tres conductos cársticos de fluio preferencial de agua subterránea a las profundidades de 8-12 m, 20-22 m y 28 m, asociados con antiguas posiciones del nivel freático, directamente relacionados con variaciones del nivel del mar durante el Pleistoceno. Es un acuífero que presenta una gran porosidad secundaria y almacena grandes volúmenes de agua; además, el gradiente hidráulico es muy pequeño, lo que significa que el aqua se mueve en promedio algunos metros por día.

Las cualidades esenciales de las zonas hidrogeológicas están dadas por:

- (1) Sus rasgos distintivos, como las sierras, fracturas, acuíferos, selva caducifolia, manglar y litoral.
- (2) Los procesos que tienen lugar, en términos de los flujos de materia y energía que manejan el sistema como la luz solar, el reciclamiento de nutrientes y el flujo de agua, que limitan la productividad del sistema.
- (3) Las modulaciones, como factores variables que limitan la capacidad de carga en el corto plazo (día a día), como la temperatura, la marea oceánica, la disponibilidad de nutrientes minerales, gases disueltos o presencia de químicos tóxicos.
- (4) Las características o aspectos que distinguen una zona de otra, como la riqueza de especies, las condiciones generales del agua y la apariencia visual del paisaje.

El entendimiento de estos factores es útil para diseñar un programa de manejo integral de los ecosistemas contenidos en la cuenca. La alta permeabilidad de las rocas que constituyen el subsuelo de estas zonas, y lo poco profundo del manto de agua, asignan a la península de Yucatán un índice de vulnerabilidad que va de alto a extremo¹. Es necesario entonces integrar la zona hidrogeológica costera con aquellas asociadas como el semicírculo de cenotes o planicie interior, por ejemplo, por la sencilla razón de que el flujo de agua desde tierras altas es el factor primario de control de las condiciones de los sistemas costeros. De esta manera, el mantener la calidad v la cantidad de flujo a través de la regulación de las prácticas de uso del suelo debe ser considerado como prioritario. La capacidad de carga de la región costera es controlada por todos los factores que influyen en la estructura y el funcionamiento de los paisajes y ecosistemas al interior de la zona hidrogeológica del cual forman parte.

Escenarios

En el estado de Yucatán el volumen de recarga subterránea que proviene de la precipitación se pierde en gran parte por la gran evaporación del área; se conservan sólo 6,504 millones de metros cúbicos al año (Mm³/año), así como la recarga subterránea que proviene de los

estados vecinos que es de aproximadamente de 1,500 Mm³/año. En condiciones actuales de bombeo de más de 550 Mm³/año para actividades humanas, la descarga de agua subterránea al mar es de 7.489 Mm3/año si se considera el retorno por riego y aguas residuales. Sin embargo, cabe destacar la importancia que tienen los volúmenes de conservación, tanto para mantener la calidad del aqua subterránea como las características ambientales o ecológicas, principalmente en la región costera; esto representa volúmenes de 2,604 y 1,972 Mm³/ año, respectivamente, por lo que queda una disponibilidad hídrica real o efectiva de casi 2,342 Mm3/ año. Es decir, la cantidad de agua pareciera no representar un freno para el desarrollo regional, pero sí su calidad, más aún con las proyecciones de desarrollo para los próximos 20 años.

En el semicírculo de cenotes, que tiene un acuífero con un espesor de 40 m, la explotación actual del agua subterránea asciende al 23 % de la disponibilidad efectiva, y se espera que se incremente a un 48 % en el 2020, en el mejor escenario. Para el caso de la planicie interior, la explotación es del 27 % y se espera un incremento de más del 1000 % de la disponibilidad efectiva en el 2020, por lo que requeriría de las descargas naturales necesarias para la conservación del ecosistema¹. Si a lo anterior sumamos las características salinas de las aguas subterráneas costeras, la vulnerabilidad de la cuenca se incrementará significativamente.

En este sentido, el acercamiento al binomio aguabosque se materializa en el manejo de la zona de borde entre las zonas de recarga y descarga de la cuenca, particulamente en el paisaje costero caracterizado como sabana o selva inundable, donde se desarrollan actualmente actividades agropecuarias cada vez con mavor intensidad. Es en este paisaje donde el proceso de formación del acuitardo costero (caliche, capa impermeable de carbonato de calcio en la cual el paso del agua a través de su matriz es muy lento o nulo) es necesario para el mantenimiento del gradiente hidráulico estacional del acuífero y el nivel de la interfase salina; además, aquí el proceso de purificación de la masa de agua contaminada, que proviene de tierras altas, amortigua el impacto que pudiera producirse en los bosques de manglar y las aguas litorales y actúa como biofiltro (depuración de la masa de agua a través de la vegetación). En la actualidad, los contaminantes vertidos al acuífero y al mar en la península de Yucatán son de 517 ton/día, descontando la remoción a través de plantas de tratamiento. Si no se toman acciones de saneamiento en la cuenca, se teme que los contaminantes vertidos se incrementen a más de 900 ton/día para el 2020.

La contaminación del acuífero constituye actualmente el factor limitante más importante para el hombre y requiere que se enfoque de un modo integral, donde los tratamientos del agua y de los desechos se enlacen en un sistema de "recirculación" y fomenten el desarrollo tecnológico de una industria ambiental local. Los esfuerzos que habrán de dedicarse ahora a la reducción y a la prevención de la contaminación proporcionarán tal vez la retroalimentación que impedirá que se degraden por completo los recursos de la tierra y de la selva; por ello deben estimularse económicamente aquellas industrias y actividades que mantienen la calidad de la existencia social. Mientras esta transición no se logre, la base del desarrollo económico se debe desplazar de la explotación

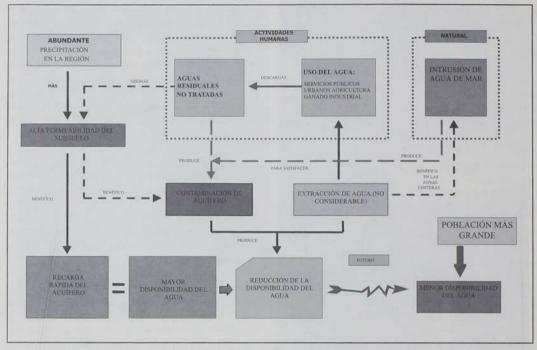
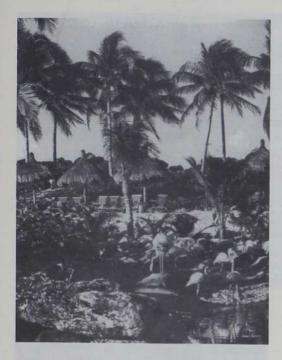


Figura 2. Situación del sector del agua en la península de Yucatán.


a la recirculación, del desechar al volver a usar, y de la cantidad a la calidad (figura 2).

Manejo ecohidrológico

Son dos las principales interacciones que podemos mencionar con relación al manejo ecohidrológico de la cuenca: la primera se refiere a las descargas de agua contaminada hacia las aguas subterráneas y su transporte hacia la zona costera, que genera problemas sanitarios; la segunda se refiere a la intrusión salina del mar hacia el interior de la cuenca que reduce el espesor del agua dulce disponible y coloca en riesgo el abasto de agua de calidad para la vida humana, la flora y la fauna regional. Este impacto se produce por la ruptura del caliche (acuitardo) y la sobreexplotación para sistemas de riego y abasto urbano.

De esta manera es necesario proteger una franja de selva baja caducifolia como zona de amortiguamiento previo a la fito-remediación (remediación por plantas o biológica) de la zona de descarga. En esta franja de selva caducifolia, que puede extenderse unos 10 km tierra adentro, debe fomentarse el manejo de recursos naturales a través de unidades de manejo y conservación de vida silvestre (venado, cocodrilo, silvícola, aves canoras y de ornato, ecoturismo, palmas, manglar, actividad apícola, milpa, leña, etc.) que aseguren el crecimiento de la cobertura vegetal v el desarrollo estructural de la selva: también debe estimularse la creación de unidades de pesca de fomento en las ciénagas y rías (camarón, jaiba, peces, chivita, diversificación salinera, ecoturismo), donde se aseguren condiciones adecuadas para la producción biológica de los principales recursos de subsistencia y excedentes para el mercado de las comunidades en condiciones de extrema pobreza.

El suelo sufre procesos de erosión hídrica vertical severa en esta área de amortiguamiento debido principalmente a las actividades agropecuarias; por ello es necesario incrementar la capacidad de campo del suelo en tierras

altas que asegure la disponibilidad de agua para la vegetación selvática. En este sentido deben realizarse esfuerzos correctivos a través de la producción de composta y evitar la pérdida de agua por evaporación o escorrentía. Cabe distinguir dentro de la cadena de alimentos la vía del detritus (de la materia orgánica) en donde la comiente principal de energía va por los desechos y residuos orgánicos. De este concepto nace la propuesta de agricultura orgánica y el reciclamiento de residuos sólidos, no tóxicos ni peligrosos, como los metales, vidrio, papel, etc.

Areas prioritarias

Las áreas de interés ambiental o ecológico en las zonas hidrogeológicas y la región costera se refieren a las áreas de preservación, conservación, aprovechamiento y restauración. Se pueden considerar los siguientes seis factores en la selección de estas áreas:

(I) Importancia ecológica del área y su tolerancia a la alteración.

- (2) Clasificación de las aguas en la vertiente.
- (3) Potencialidad de los suelos del área.
- (4) Susceptibilidad de las áreas a la inundación, tanto por tormentas como por escurrimiento.
- (5) Importancia histórica y étnica del área y uso de los recursos naturales.
- (6) Rasgos distintos que requieren protección, importancia como hábitat, alta productividad biológica, riqueza de especies y que proporcionen una integridad estructural al sistema.

Estrategias regionales

En la península de Yucatán el éxito de un programa regional depende de los siguientes factores críticos ³.

(1) Es necesario que las diversas instancias involucradas aprecien adecuadamente el valor de los diferentes recursos de la cuenca hidrológica. Por más que sean muchos los beneficios que los humedales costeros proporcionen a la sociedad, la única forma de que el gobierno y la sociedad les conceda algún grado de importancia es si estos beneficios les son demostrados fehacientemente. En este punto, la zona costera de la península de Yucatán ha sido objeto de mucha labor proteccionista que se refleja en la creación de 10 áreas naturales protegidas, federales y estatales, así como un ordenamiento ecológico en el corredor Tulúm - Cancún.

En el caso del estado de Yucatán, tanto en el Programa de Manejo de la Reserva Estatal de El Palmar, elaborado en 19914, como en el Marco de Referencia para el Manejo Integral de la Zona Costera de Yucatán de 19955, el Plan Estatal de Desarrollo 1995-20016, y el Programa Estatal de Prioridades de la SEMARNAP en Yucatán 1994-2000 establecen, entre los puntos más importantes, la recuperación del ecosistema de ciénaga que corre a lo largo del litoral; consideran también un desarrollo social ordenado basado en el aprovechamiento racional de los recursos naturales con la finalidad de mejorar las condiciones de vida de la población en esta región del estado de Yucatán, que cuenta con amplia riqueza de recursos naturales, a través de la preservación

y recuperación del medio ambiente. Uno de los pasos para lograr la recuperación del sistema de ciénaga es la rehabilitación del régimen hidrológico, ya que es en torno a éste que se llevan a cabo una serie de procesos esenciales, como el aporte de nutrientes, la dispersión de elementos tóxicos y la heterogeneidad ambiental. Considerando que es de gran importancia la recuperación del ecosistema en el área de la ciénaga, se logró fortalecer u extender a toda la costa de Yucatán las acciones de restauración ambiental mediante la creación en 1997 del Comité de Restauración, Conservación y Aprovechamiento de los Humedales Costeros del Estado de Yucatán, con la representación de los diferentes niveles de gobierno, la sociedad civil, productores y centros de investigación, el cual ha elaborado un programa de desarrollo con metas al 2010 7.

(2) En los humedales costeros se ha logrado un amplio consenso entre las diferentes instituciones involucradas en la protección y la conservación de los recursos naturales. Sin embargo, cuando se va a manejar en forma integrada enormes volúmenes de agua tierra adentro, se debe tomar en cuenta a los vecinos de tierras bajas v la estabilidad del sistema global, va que la cuenca desemboca en la costa y presenta complejas conexiones ecológicas, geográficas y demográficas funcionales. El reconocimiento al Comité de Restauración, Conservación y Aprovechamiento de los Humedales Costeros de Yucatán por parte de la Comisión Nacional del Agua es un primer avance al que deben integrarse los Comités de Restauración de los Estados de Campeche y Quintana Roo; este compromiso se estableció en la reunión de gobernadores de la península de Yucatán, fortaleciendo el proceso de coordinación y adopción de responsabilidades para una real integración de la zona de descarga con la cuenca hidrológica de captación o zona hidrogeológica funcional.

Recomendaciones

Para mantener el ecosistema en un funcionamiento adecuado es necesario proteger y optimizar las fuentes y los flujos de energía y materia que dan fuerza al sistema ⁸.

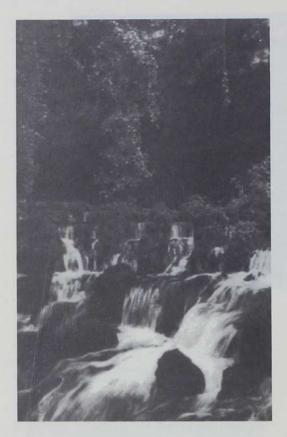
(1) Debe evitarse la reducción de la disponibilidad de nutrientes al ecosistema por la alteración de los influjos de agua dulce, al tiempo que la descarga excesiva de

compuestos nitrogenados en áreas confinadas pueden presentar efectos adversos.

- (2) Debe prevenirse cualquier reducción significativa de las concentraciones naturales de oxígeno disuelto en el agua.
- (3) Es necesario prevenir la adición de sedimentos que disminuyan la transparencia de las aguas.
- (4) Es importante reconocer el valor de los elementos de almacenamiento del ecosistema debido a que ellos parecen tener una laxitud ecológica que los convierte en víctimas del desarrollo. La pérdida de humedales, de selva y de duna costera debe frenarse ya que representan los principales almacenes de materia y energía del sistema en su conjunto. Mientras mayor sea el grado de desarrollo, más grande será la necesidad de proveer áreas vegetativas amortiguadoras a lo largo del sistema de recarga y descarga.

74 Marzo-abril de 2002

(5) Es necesario vigilar alteraciones en el régimen de temperatura y en el patrón de salinidad, así como detectar la presencia de patógenos y sustancias tóxicas.


Consideraciones finales

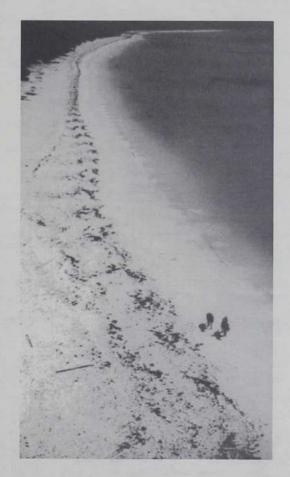
La tecnología por sí misma no puede resolver el problema ambiental, por lo que deben hacerse efectivas coacciones morales, económicas y legales, donde el manejo de ecosistemas o paisajes se convierta en una empresa que requiera la fusión de una serie de disciplinas y misiones que hasta ahora han sido cultivadas independientemente unas de otras. En consecuencia, el éxito o fracaso de la aplicación de los principios de la ecohidrología dependerá no tanto de la tecnología y la ciencia ambiental como tales, sino de la economía, del derecho, de la planificación urbana y rural, y de otras áreas del campo de las humanidades, que hasta el presente han tenido poca repercusión ecológica.

La conservación de los recursos naturales de la cuenca depende de que el Consejo de Cuenca de la Península de Yucatán impulse estrategias para el manejo de los recursos minerales (explotación de roca calcárea), el desarrollo agropecuario y agroforestal; en el mismo sentido se debe considerar la vida silvestre, el agua y las pesquerías y la administración de los pastizales o sábanas, la erosión del suelo y el control de la salinización del acuífero, particularmente en el semicírculo de cenotes y planicie interior como zonas prioritarias.

En términos de la relación entre recursos naturales. ambiente natural, desarrollo económico regional v la distribución de la población, es interesante hacer notar que se considera el agua como un elemento pasivo que recibe la mayor influencia de los demás a través de la contaminación. Debido entonces a que el agua, como recurso limitante para el desarrollo, presenta una alta vulnerabilidad se justifica la necesidad de elaborar un ordenamiento ecológico de las zonas hidrogeológicas integradas. Es por tanto importante fortalecer la red de monitoreo de aguas subterráneas peninsulares mediante la instrumentación de estaciones de registro de la calidad de agua y el aforo de descargas y de los principales procesos costeros; este proceso permitiría ajustar los balances actuales, controlar el deseguilibrio de la interfase marina y el avance de la intrusión marina, de tal manera que los volúmenes de agua puedan protegerse para preservar su calidad y las necesidades del ambiente.

De igual forma, la actividad pesquera se inserta en las cadenas productivas industriales de la región de manera

importante. La inversión en el sector pesquero ha desencadenado un efecto multiplicador a gran escala que absorbe una fuerte cantidad de mano de obra, reteniendo población, principalmente proveniente de la región henequenera en el semicírculo de cenotes. Esto tiene que ver con su capacidad amortiguadora que coloca a dicho sector pesquero como un actor principal en el desarrollo regional. De ahí la importancia de elaborar un programa de ordenamiento ecológico de las zonas hidrogeológicas, que surja de la actividad pesquera (como elemento amortiguador), a través del manejo del agua (elemento pasivo) y que se extienda hacia el interior para dar sustentabilidad a la actividad agrícola y pecuaria (elemento crítico que tiene una gran influencia sobre las demás actividades y principal fuente de impacto en la región); asimismo, es importante regular las actividades y las emisiones contaminantes del sector industrial y de servicios, factor de desarrollo regional (elemento activo capaz de arrastrar la economía regional), además de controlar el crecimiento urbano.


En este sentido, los consejos de cuenca deben ampliar su participación, no solamente para cubrir aspectos de infraestructura hidráulica para los sistemas de irrigación, sino para consolidar espacios de discusión sobre el desarrollo a largo plazo, promoviendo con las autoridades locales el inicio de los trabajos tendientes a elaborar el programa de ordenamiento de la zona hidrogeológica; entre estas autoridades se deberá considerar la de Ecología, Desarrollo Económico y Rural, Consejo Estatal de Población, Desarrollo Urbano, así como productores, ONG y centros de investigación. Es necesario que exista congruencia de objetivos y metas de las diferentes políticas de población, tanto federales como estatales y municipales, mediante la integración de indicadores y metodologías que contribuyan al entendimiento de esta interacción, con una participación de las comunidades locales en la formulación y la ejecución del programa de ordenamiento.

Notas

- 1. Diagnóstico y Lineamientos Hidráulicos Regionales de la Península de Yucatán, Comisión Nacional del Agua, Península de Yucatán (CNA, 2000).
- 2. El proceso para el cuidado y manejo responsable del recurso agua en la península de Yucatán, reporte final y recomendaciones, Seminario Internacional "Resolviendo hoy la problemática del agua de mañana" (Comisión Nacional del Agua, CNA-UNU/RIAMAS, 2000).
- 3. E. Batllori, tesis doctoral, Facultad de Geografía de la Universidad de la Habana, Cuba (1995).
- Programa de Manejo de la Reserva Estatal de El Palmar, Yucatán, Gobierno del Estado de Yucatán; Manejo de Recursos Silvestres (Secretaría de Ecología, 1991).
- Marco de referencia para el manejo de la zona costera del Estado de Yucatán, UADY, F. Flores et al., eds. (CECE, 1995).
- 6. Plan Estatal de Desarrollo 1995-2001, Gobierno del Estado de Yucatán.

7. E. Batllori y J.L. Febles, Programa de Restauración, Conservación y Aprovechamiento de los Humedales del Territorio Costero de Yucatán. Perspectivas para el Siglo XXI, documento técnico, Departamento de Ecología Humana, Cinvestav-U. Mérida (2001).

8. E. Batllori, Conferencia del Día Mundial del Agua Comisión Nacional del Agua (Mérida, 1997).

ESTANCIAS DE VERANO EN EUA PARA INVESTIGADORES JÓVENES, AMC-FUMEC

2002

La Academia Mexicana de Ciencias (AMC) y la Fundación México-Estados Unidos para la Ciencia (FUMEC) convocan al programa de estancias de verano para investigadores jóvenes de las áreas de Astronomía, Ciencias Ambientales, Computación, Ciencia de Materiales, Física y Química para realizar visitas académicas en laboratorios y centros de investigación de EUA. Un comité nombrado por la Academia Mexicana de Ciencias seleccionará a cinco investigadores. El comité tomará en cuenta, entre otros criterios, el currículum vitae del candidato, la calidad tanto de su plan de trabajo como del departamento y de su contraparte en Estados Unidos y el impacto de la visita tanto para el candidato como para su grupo de trabajo. Se favorecerá a aquellos investigadores que inicien nuevas colaboraciones.

Cada investigador recibirá una beca de \$4,500 dólares americanos. Este programa de becas no cubre los costos de pasaje ni de seguros.

Los candidatos deberán cumplir con los siguientes requisitos:

- 1. Tener menos de cuarenta años al cierre de esta convocatoria.
- 2. Ser investigador de tiempo completo en alguna institución mexicana.
- 3. Las propuestas deberán ser enviadas a las oficinas de la Academia Mexicana de Ciencias, dirigidas al Comité de Evaluación, incluyendo la siguiente documentación:
- a) Carta de motivos (se deberá resaltar el impacto que su trabajo de investigación tendrá en el área de su especialidad).
- b) Forma AMC-EV (proporcionada por la Academia o también disponible en Internet: http://www.amc.unam.mx/Asuntos_internacionales/fumec.html).
- c) Curriculum vitae completo (incluyendo lista de publicaciones).
- d) Plan detallado de trabajo para la visita.
- e) Carta de aceptación de la institución anfitriona y fechas probables de la visita. La estancia deberá tener una duración mínima de dos meses y medio en el verano de 2002.
- f) Copias de comprobantes de los puntos 1 y 2 de esta convocatoria.
- g) Para el caso de estancias de investigación en ciencias ambientales, se deberá incluir en la carta de motivos, un parrafo donde se especifique detalladamente por qué considera su trabajo dentro de esta área de investigación.
- Las publicaciones o productos de investigación resultados de este programa harán mención explicita de los organismos patrocinadores.
- 5. Los investigadores seleccionados deberán entregar un breve informe a la Academia, sobre las actividades realizadas durante la visita.
- 6. Toda la documentación deberá ser entregada a más tardar el viernes 3 de mayo de 2002 en las oficinas de la Academia, Av. San Jerónimo 260, Col. Jardines del Pedregal, México, D.F. 04500, o al Km 23.5 Carretera Federal México-Cuernavaca, (Casa Tlalpan) San Andrés Totoltepec, Tlalpan, México, D.F. C.P. 14400 entre las 10:00 y las 18:00 horas de lunes a viernes.

Mayor información: Act. Claudia Jiménez Sria. Técnica de Asuntos Académicos, AMC. Tel. (5)616 42 83, (5)849 51 09, Fax: (5)550 11 43 e-mail: claujv@servidoc.unam.mx, http://www.amc.unam.mx http://www.amc.unam.mx/Asuntos_internacionales/fumec.html

Materiales alternativos al cemento Pórtland

José Iván Escalante García

El concreto es el material que ha tenido el mayor uso en la construcción de edificios e infraestructura en la historia de la civilización. En particular, la demanda de cemento Pórtland se incrementa conforme aumenta la población mundial. Sin embargo, la industria asociada a la generación de este tipo de cemento involucra altos requerimientos energéticos y una fuerte emisión de contaminantes. En la actualidad no existe un material alternativo que pueda ser utilizado como material de bajo costo en construcciones de gran volumen. En el presente artículo se analiza el uso de algunos materiales alternativos que pueden resolver algunos de estos problemas y que además pueden mejorar las propiedades tecnológicas de construcción del cemento Pórtland.

Desde tiempos inmemoriables el hombre ha edificado construcciones para resguardo propio o con propósitos sociales o religiosos. Los egipcios empleaban lodo del río Nilo para sus construcciones; no obstante, las bajas temperaturas que podían lograr sólo les permitían usar materiales de poco valor cementoso sin resistencia a la humedad. Los romanos descubrieron la tecnología de los materiales llamados "puzolánicos": para producir sus cementos mezclaban cal con cenizas que provenían de un lugar llamado Pozzouli. Muchas de las edificaciones de los romanos se mantienen todavía en pie, lo que refleja el alto nivel de su tecnología aun para nuestros días. En la edad media se perdió tanto la inercia del desarrollo como mucho de los conocimientos de los romanos y no fue sino hasta el siglo XIX que se trabajó intensamente

El Dr. José Iván Escalante García es investigador titular de la Unidad Saltillo del Cinvestav. Dirección electrónica: jieg@saltillo.cinvestav.mx

en muchas investigaciones (predominantemente empíricas) en la búsqueda de nuevos materiales para construcción. La patente de lo que hoy conocemos como cemento Pórtland se otorgó a J. Aspdin en 1824 en Inglaterra; sin embargo, la historia involucra otros nombres con tiempos y hechos que apuntan a que Aspdin no fue el único abocado al desarrollo de este tipo de cemento.

¿En que consiste la explotación del cemento?

El cemento Pórtland es el ingrediente ligante o adhesivo del concreto. Está compuesto principalmente por óxidos de calcio, silicio, aluminio y hierro hasta en un 95%. Las fases presentes comprenden principalmente silicatos de calcio (3CaO·SiO $_2$ y 2CaO·SiO $_2$) y en menor proporción aluminato de calcio (3CaO·Al $_2$ O $_3$) y ferroaluminato de calcio (4CaO·Al $_2$ O $_3$). Las propiedades de

endurecimiento del cemento se logran mediante la mezcla de éste con el agua. Esto resulta en la formación de productos de hidratación que poseen cualidades ligantes y baja solubilidad en agua (las estructuras de cemento pueden subsistir aun bajo el agua). La reacción química principal se da con el silicato tricálcico y el agua, expresada en la fórmula condensada (C = CaO, S = SiO₉, H = H₉O)

$$C_3S + H \rightarrow C_3-S-H + (3-x) CH$$
.

El gel C-S-H (sin indicar composición específica) es el responsable de las propiedades mecánicas conocidas del cemento; el CH [Ca(OH)₂] es un subproducto de poco valor cementoso y puede ser el punto de origen de algunas reacciones degenerativas del cemento Pórtland hidratado.

El cemento Pórtland tiene características peculiares con respecto a otros materiales de construcción. Se requieren conocimientos en dos líneas principales para su explotación adecuada. En primer lugar sobre los procesos de fabricación, que involucran materias primas (selección y formulación), procesamiento térmico (calentamiento y enfriamiento) y molienda; sólo un cemento bien procesado tiene buen potencial de desempeño. En segundo lugar vienen los problemas involucrados en la utilización del cemento, donde se requiere tener conocimientos sobre la química de hidratación, interacción con agregados y con fibras, reacciones nocivas, resistencia al ataque químico, etc. La preparación de un buen concreto puede ser cuestión de buena suerte, pero en general la obtención de buenas propiedades y buena durabilidad (por muchos años), lejos de ser trivial está ligada al dominio del proceso.

Cemento y contaminación

Durante los últimos 60 años el estudio de la fabricación y utilización del cemento Pórtland se ha atendido con enfoques cada vez menos empíricos y más científicos. A raíz de esto, los procesos de producción se han mejorado; uno de los más notables ha sido el cambio del proceso que manejaba la materia prima en húmedo (barbotinas) al manejo en seco; como resultado se obtuvieron ahorros de energía de más del 40%, sin mencionar la reducción de emisión de contaminantes y del tamaño de los homos. La producción de cemento es un proceso de alta demanda energética de combustibles (\approx 4,000 kJ/kg cemento, 25%

de pérdidas) y con alta emisión de contaminantes (0.85-1 kg CO₂/kg cemento) por descarbonatación de materia prima y uso de combustibles. Las restricciones ambientales impuestas a las cementeras son cada vez más estrictas¹, lo que deberá llevar a la optimización de procesos o a la búsqueda de alternativas para la resolución de los diversos problemas y necesidades actuales.

Desde la perspectiva internacional, existe el constante crecimiento de la población, que a su vez demanda infraestructura de vivienda y social en los lugares de asentamiento. Para satisfacer la creciente demanda de cemento es necesario buscar esquemas alternativos de apovo, de otra suerte los costos económicos, energéticos y ecológicos serían muy altos. La producción mundial de cemento es de aproximadamente 1500 millones de toneladas, con la consecuente emisión de casi la misma cantidad de toneladas de CO. Desde la perspectiva nacional, México produce suficiente cemento para el consumo interno. De hecho la principal compañía nacional (Cemex) es el tercer productor mundial (incluyendo todas sus plantas en varios países) y es también el primer exportador mundial. Sin embargo, existe la necesidad de crear materiales de construcción de menor costo; por otro lado, dada la diversidad y lo extremoso del clima en algunas regiones, se requieren materiales con propiedades diversas, por ejemplo térmicamente aislantes

Materiales alternativos

Los materiales alternativos tienen cabida como materias primas o materiales cementosos de reemplazo parcial o total del cemento Pórtland. Parte de la generación de CO, viene de des-carbonatación del CaCO, que representa alrededor del 80% de la materia prima (0.3Kg CO, /Kg cemento). El uso de fuentes de CaO diferentes puede aliviar parcialmente tal situación. Por otro lado. es posible usar cenizas y escorias como materias primas; sin embargo, en este artículo nos interesará el carácter adhesivo de los materiales alternativos. Se puede definir un material adhesivo alternativo como aquel que tenga propiedades cementosas per se o latentes (que requieren ser potenciadas externamente), esto es, que pueda emplearse como substituto parcial o total del cemento Portland. A continuación se revisarán algunos detalles respecto a su composición química, origen, forma de uso y posibles ventajas.

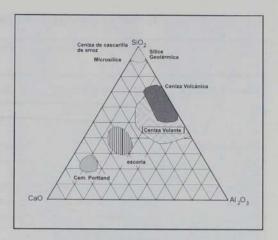


Figura 1. Composición química aproximada de los materiales alternativos empleados en construcción.

¿Cómo se pueden clasificar los materiales alternativos? Los hay sintéticos o naturales, pero una clasificación más adecuada involucra su composición química y por ende el tipo de productos de hidratación que forman. Se puede decir que existen materiales puzolánicos e hidráulicos. La figura 1 presenta los campos de composición química aproximada de los materiales alternativos en un diagrama de composición SiO₂-CaO-Al₂O₃.

Materiales puzolánicos

Las puzolanas son aquellos materiales de composición rica en SiO_2 , similares a las cenizas volcánicas utilizadas por los romanos. Ejemplos de éstos son la ceniza volcánica (empleada en nuestro país), la sílice condensada, algunos caolines, ceniza de cascarilla de arroz y desechos geotermales. La tabla 1 presenta un resumen de algunas de sus características. Todos estos materiales pueden ser empleados como reemplazo parcial del cemento Pórtland y algunos como reemplazo total. Los materiales puzolánicos son así llamados por la interacción química con los productos de hidratación del cemento, principalmente $[\mathrm{Ca}(\mathrm{OH})_2]$; la reacción que describe tal proceso es llamada "reacción puzolánica"

$$\times S_{de \ la \ puzolana} + y \ CH_{del \ cemento} + z \ H \ \rightarrow \ C_y \cdot S_x \cdot H_{(y+z)}$$

Tabla 1. Características generales de los materiales puzolánicos.

	Procesamiento adicional requerido	Características	Origen
Sílice condensada	Aglomeración para su manejo	Partículas esféricas de tamaño < 1µm. Alta área superficial	Vapores condensados de la producción de carburo de silicio
Ceniza volcánica	Molienda	Reactividad variable, partículas de forma irregular	Emisiones volcánicas
Ceniza de cascarilla de arroz	Calcinación, se aprovecha el calor generado como combustible	Morfología irregular, tamaño muy fino, alta área superficial	Producción de grano de arroz
Sílice geotérmica	Lavado	Morfología irregular, tamaño submicrónico, alta área superficial	Incrustaciones en líneas de vapor geotermal (generación de electricidad).
Caolines	Tratamiento térmico hasta 800°C	Tamaño de partícula fina, alta área superficial	Mineral
Ceniza volante		Partículas esféricas de tamaño variable similar o menor a las del cemento Portland	Generadas por la combustión de carbón para la generación de electricidad

La generación de más C-S-H y la eliminación del CH producido por el cemento explica el incremento en las propiedades mecánicas de cementos reemplazados. Los antiguos cementos romanos mezclaban simplemente cal [Ca(OH)₂] con material volcánico y obtenían C-S-H como se plantea en la reacción anterior. Además de la composición química de las puzolanas, sus características físicas, como tamaño de partícula y morfología, influyen también considerablemente en las propiedades del cemento substituido.

Los niveles de reemplazo de los materiales puzolánicos por cemento pueden llegar hasta un 30%. Algunos de estos materiales son empleados en nuestro país, mas no se explota todo su potencial y las cantidades generadas no se conocen con total certidumbre; sin embargo se ha citado una producción mundial de 180×10^6 toneladas de ceniza volante².

Materiales hidráulicos

Estos materiales son de los más comúnmente empleados en la escoria de alto horno granulada; sin embargo, es posible emplear escorias de otros procesos como los de aceración, producción de fósforo, cobre, zinc y plomo^{3,4}. Pueden considerarse como materiales sintéticos dado que son subproductos. En términos generales requieren de molienda antes de ser empleados como reemplazo del cemento Pórtland.

Para el caso de escoria de alto horno (producción de hierro), los niveles de substitución por cemento⁵ son de 10 a 90% y varian según las normas locales. Al igual que las puzolanas, interacciona con los productos de hidratación del cemento pero la reacción es diferente ya que los materiales hidráulicos, como la escoria de alto horno, contienen calcio en su composición química. La reacción que produce C-S-H y elimina el CH generado por el cemento sería (sin balancear):

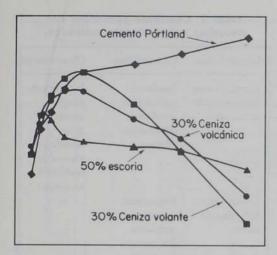


Figura 2. Evolución de la concentración de Ca(OH)2 durante la hidratación de un cemento Pórtland puro y cemento substituido con escoria y cenizas volcánica y volante.

$$xC + yS + zCH_{del comento} + H \rightarrow C-S-H.$$

La figura 2 muestra la producción de Ca(OH)₂ generado durante las reacciones de hidratación del cemento Pórtland vs tiempo. El resto de las líneas representa la concentración de Ca(OH)₂ para cementos Pórtland substituidos con escoria de alto horno, ceniza volante y ceniza volcánica (mexicanas). Puede notarse que las curvas de concentración de Ca(OH)₂ para el cemento substituido inicialmente suben y eventualmente tienden a la baja al dar inicio la reacción de consumo del Ca(OH)₂.

Para los materiales de reemplazo del cemento Pórtland generalmente se requiere un estado estructural amorfo (como los vidrios), esto es, con alta energía interna y por ende inestables termodinámicamente y muy reactivos químicamente⁶. El mecanismo básico es el ataque alcalino de los OH sobre la estructura vítrea para disolverla, con la consecuente combinación con el Ca(OH)₂ y precipitación de productos cementosos tipo C-S-H.

Disponibilidad de materiales

Se estima que la producción nacional de escoria es de aproximadamente 1.4x106 toneladas anuales entre las

dos principales acereras nacionales (EUA comercializa 106 e India 7x106 toneladas anualmente7), esto equivale a la producción anual de una planta cementera. No se dispone de datos confiables de la generación de ceniza volante adecuada para aplicarse en cementos; sin embargo, los planes de expansión de infraestructura de la Comisión Federal de Electricidad sugieren que habrá generación de cantidades considerables de este material. La cantidad de ceniza volcánica empleada es una función de la disponibilidad. Al respecto de la sílice geotérmica, algunos estudios preliminares han mostrado su carácter puzolánico8: actualmente está en desarrollo un extenso estudio sobre la viabilidad de uso en cemento Pórtlando. La sílice geotérmica no se explota sistemáticamente y se estima un acumulado a la fecha de al menos 500.000 toneladas.

Tabla 2. Cementos substituidos a base de cemento Pórtland.

Ligante básico	Materiales de reemplazo	Resistencia mecánica
	Ceniza volante	1
	Ceniza volcánica	√
Cemento	Escoria de alto homo	1
Portland	Sílice condensada	444
	Caolines	√
	Sílice geotérmica	₩

Existen otras fuentes de desechos. Por ejemplo, el yeso puede provenir de la industria cerámica tradicional (producción de muebles para baños, etc.) o como subproducto de fabricación de ácido fluorhídrico. Otros materiales de desecho que pueden ser empleados son las escorias de otras industrias metalúrgicas¹⁰, así como lodos de drenaje¹¹, lodos de producción de aluminio¹² o residuos de incineradores municipales¹³. Por supuesto, es necesaria una base de datos o una bolsa de desechos industriales que permita la reutilización y el aprovechamiento de desechos de este tipo.

Esquemas de materiales cementosos y sus ventajas

Los esquemas de materiales adhesivos existentes varían en función de su composición y sus propiedades; una posible clasificación considera sistemas básicos o substitutidos. Los materiales cementosos son nobles y son muchos los materiales que pueden incorporarse. Un ejemplo de esto es la inmovilización de desechos peligrosos en matrices de cemento Pórtland o hasta la incorporación de llantas recicladas que mejoran la impermeabilidad del sistema¹⁴. El cemento Pórtland (cemento base) puede reemplazarse por los materiales indicados en la tabla 2. En todos los casos se obtienen mejores propiedades de resistencia y de durabilidad. Los materiales como la sílice condensada y la escoria inducen propiedades de alta resistencia mecánica (120Mpa)¹⁵.

Tabla 3. Cementos generados con desechos químicamente activados.

Ligante básico	Características	Observaciones
Escoria de alto homo activada por álcalis	Excelentes propiedades mecánicas, 0% cemento Pórtland	Posiblemente pueda incorporar otros desechos, ahorros de hasta 40% en costos
Ceniza volante activada por álcalis	Propiedades mecánicas aceptables, 0% cemento Pórtland ¹⁸	
Escoria de producción de fósforo y cobre ¹⁹	Buenas propiedades mecánicas, 0% cemento Pórtland	
Cementos de sulfoaluminatos de calcio ²⁰	Relativamente reciente, en desarrollo con excelentes propiedades	Menor demanda energética que el cemento Pórtland
Cementos supersulfatados	5% cemento Pórtland, 80-85% escoria, 10-15% yeso	No soportan curado a alta temperatura

Otro esquema es el de los desechos químicamente activados, por ejemplo las escorias de alto horno activadas. En este caso no se usa cemento Portland y las reacciones de hidratación de la escoria se activan con agentes alcalinos como hidróxido de sodio, silicato de sodio y carbonato de sodio. Las propiedades mecánicas resultantes dependen del tipo de agente activante¹⁶: generalmente las mejores propiedades se obtienen con silicato de sodio y las más pobres con hidróxido de sodio.

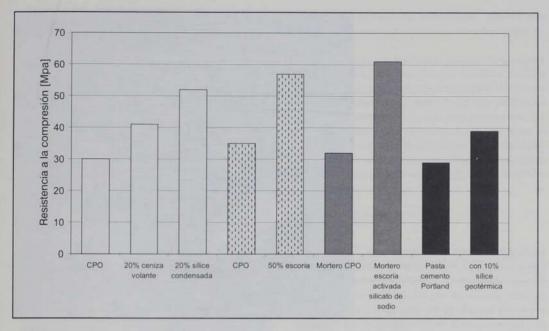


Figura 3. Resistencia a la compresión de diversos sistemas cementosos^{4,6,22}.

Algunos estudios sobre la adición de desecho de sílice geotérmica al sistema de escoria con NaOH indican incrementos significativos de las propiedades mecánicas¹⁷. Los productos de reacción generados son similares al C-S-H del cemento Pórtland. La posibilidad de combinar algunos desechos con la escoria activada con agentes de bajo costo ha dado resultados promisorios. Las cenizas volantes activadas están también bajo estudio con buenas propiedades mecánicas. La tabla 3 presenta algunos esquemas con pequeñas fracciones o nada de cemento Pórtland.

Otro esquema alternativo con gran potencial y que puede presentar ligereza, buen acabado y rápido fraguado es el que involucra yeso + cemento + puzolana. El costo de estos materiales puede implicar ahorros de hasta 70%⁴; sin embargo, la durabilidad de estos sistemas no está bien definida y continúa bajo estudio²¹. Las posibilidades de igualar estos esquemas con materiales sólo de desecho o subproductos son interesantes y se están desarrollando en la Unidad Saltillo del Cinvestav. Asimismo, se llevan a cabo estudios sobre el sistema cemento Pórtland + escoria activada por álcalis.

Cementos substituidos y "cementos sin cemento Pórtland"

Las propiedades primordiales de interés para los usuarios de materiales de construcción son la resistencia mecánica y la durabilidad. Algunas ventajas que pueden explotarse del empleo de materiales cementosos constituidos parcial o totalmente por desechos o subproductos son los siguientes (con respecto de los materiales basados en cemento Pórtland):

- Propiedades mecánicas similares o en muchos casos superiores.
- Durabilidad mejorada a ambientes químicos agresivos (p. ej., agua de mar, pisos en plantas químicas).
- Extensión de la capacidad de producción del cemento cuando se usan como reemplazo (10-90%) sin requerir de procesamiento térmico adicional (ahorro de energía y menor contaminación).

 Reducción de la acumulación de desechos en tiraderos o rellenos.

Comparado con las ventajas obtenidas, las desventajas son de poco peso, pero deben tenerse en consideración en algunos aspectos tecnológicos. En el uso de escorias de alto homo inicialmente la resistencia mecánica es menor a los productos elaborados con cemento Pórtland y las ventajas se obtienen en el largo plazo (después de 28 días): mejor durabilidad, resistencia al ataque químico, propiedades mecánicas superiores. Este problema está siendo analizado en la Unidad Saltillo del Cinvestav. Las escorias activadas presentan fluidez y tiempos de fraguado menores que el cemento Pórtland, lo que puede representar problemas para concretos premezclados y su colado. El manejo de los agentes activantes alcalinos puede ser un factor de riesgo si se hace sin control.

Perspectivas

El nivel de uso de cada desecho o combinación de desechos estará regido por factores como la disponibilidad y los

efectos generados sobre el cemento. La sílice condensada puede usarse como aditivo (en lugar de reemplazo) en un 10% y mejora significativamente las propiedades mecánicas del concreto; por otro lado, las escorias se pueden emplear en reemplazo hasta de un 50% con ahorro de cemento. Los niveles de aplicación estarán regidos por las normas locales o por los requerimientos específicos de un proyecto de construcción. Por ejemplo, en los EUA la adición de materiales de desecho al cemento para comercializar no está permitida por sus propias normas; sin embargo, éstas permiten agregar, por ejemplo, ceniza volante al concreto en el sitio de la construcción. En México se permite agregar alrededor de un 5% del cemento como caliza, escoria, ceniza volante, etc.

Las propuestas de materiales adhesivos nuevos o de combinaciones nuevas siempre vienen acompañadas de ciertas dudas: ¿será durable el material?, ¿soportará las condiciones a las que se expondrá?, ¿mantendrá sus propiedades mecánicas y estéticas? Por esta razón la introducción de nuevos materiales no es trivial, especialmente cuando hay vidas humanas que dependen de la solidez y durabilidad de una estructura o construcción. Lo cierto es que existe la necesidad de alternativas de reemplazo de cemento. Si sólo en México se reemplazara

el cemento por 5% de escoria o ceniza volante, se estaría hablando de una reducción de 1.4 millones de toneladas de CO_2 liberadas al medio ambiente; extrapolada a escala mundial, la cifra sería de 75 millones de toneladas de CO_2 .

Mucho del conocimiento sobre estos procesos se genera en países desarrollados y es necesario reducir la dependencia del conocimiento y la tecnología del extranjero. La formación de recursos humanos calificados ayudará a formar un equipo que genere conocimientos y permita que estemos preparados con opciones adecuadas antes de que las necesidades nos alcancen y nos tomen desprevenidos. En opinión de algunos investigadores²³, la tecnología de materiales de alto volumen y tonelaje (cemento, concreto, acero, aleaciones ligeras, compositos) está alcanzando una madurez tecnológica que avanza ahora lentamente. Esto es aceptable sólo de manera parcial: muchos paradigmas deberán cambiar en vista de las necesidades que generará la creciente población

mundial, las restricciones ambientales cada vez más exigentes y el encarecimiento y la escasez de energéticos.

Por supuesto, la tendencia internacional deberá orientarse hacia la generación de bienestar para las generaciones actuales pero sin comprometer el bienestar de las generaciones venideras hacia una política de desarrollo sustentable. Desde esta perspectiva, los materiales alternativos de construcción, así como el reciclaje y la reutilización de muchos otros materiales, representan una de las vías de solución; es necesario generar políticas que orienten esfuerzos en esta dirección.

Conclusión

El concreto es un material estratégico: en los EUA las edificaciones y estructuras construidas representan cerca del 70% de la riqueza del país²⁴. Es importante generar una cultura que cambie la imagen del concreto como un material de bajo costo y simple de elaborar por lo que realmente es: un componente de alto desempeño y de infraestructura básica. La incorporación de materiales de desecho puede permitir extender la capacidad de producción de materiales cementosos que pueden ofrecer mejores propiedades que el cemento Pórtland y a un menor costo; coadvuvan en la reducción de emisión de contaminantes y requerimientos energéticos; reducen la acumulación de desechos en tiraderos industriales o rellenos sanitarios, etc. Las ventajas potenciales están allí; se requiere invertir tiempo, dinero y recursos humanos para llevar a nuestro país a un mejor nivel de explotación de sus recursos con una orientación de respeto al medio ambiente.

Notas

- 1. J. Davidovits, Emerging technologies symposium on cement and concretes in the global environment (Portland Cement Association, 1993).
- 2. R. Sersale, Proc 7th Int Cong. on the Chemistry of Cement. Vol. 1, IV-1 (Paris, 1980).
- 3. M. Tufekci et al., Cement and Concrete Res. 27, 1713 (1997).

- 4. C.D. Lawrence, en Leas's chemistry of cement and concrete (Arnold, 1997).
- 5. J. Daube, R. Bakker, *Blended cement ASTM STP 897*, G. Frohnsdorff, ed. (ASTM, Philadelphia, 1986) p. 5.
- 6. J.I. Escalante et al., Cement and Concrete Res. (2001).
- 7. F.J. Hogan, J.H. Rose, 2nd Int. Conf., Ed, V. M. Malhorta (Am. Concrete Institute, Detroit, 1986) p. 1551.
- 8. J.I. Escalante et al., Cement and Concrete Res. 29, 623 (1999).
- 9. L.Y. Gómez, en preparación.
- E. Douglas, P.R. Mainwaring, Am. Ceramic Soc. Bull.
 700 (1985); C. Atzeni, L. Massidda, U. Sanna, Cement and Concrete Res. 26, 1381 (1996).
- H. Uchikawa, H. Obana, World Cement 26, 33 (1995).
- 12. C. Shi, P.E. GrattanBelew, J.A. Stegemann, Constuction and Building Materials 13, 279 (1999).
- 13. K.S. Wang, K.L. Lin, Z.Q. Huang, Cement and Concrete Res. 31, 97 (2001).
- N. Segre, I. Joekes, Cement and Concrete Res. 30, 1421 (2000).

- 15. H. Uchikawa, Ceramics Transactions 40, 143 (1994).
- 16. J.I. Escalante *et al.*, XLI Congreso de Cerámica y Vidrio, Benalmédena España (2001).
- 17. V.M. Palacios Villanueva, tesis de maestría en ingeniería cerámica, Cinvestav, Unidad Saltillo (2001).
- 18. K. Ikeda, Cement and Concrete Res. 27, 657 (1997).
- 19. C. Shi, Ji. Qian, Resources, Conservation and Recycling 29, 195 (2000).
- 20. J.H. Sharp, C.D. Lawrence, R. Yang, Advances in Cement Research 11, 3 (1999).
- 21. A. Bentur, A.K. Kovler, Advances in Cement Research 25, 752 (1995).
- 22. G. Frigione, Blended cement ASTM STP 897, G. Frohnsdorff, ed. (ASTM, Filadelfia, 1986) p. 5.
- 23. M.F. Ashby, Progress in Materials Science 46, 191 (2001).
- 24. J.P. Skalny, Materials Science of Concrete 1 (American Ceramic Society, 1997).

Canales iónicos y su papel funcional en el espermatozoide

Alfonso Vega Hernández, Claudia L. Treviño y Ricardo Félix El desarrollo de los organismos multicelulares comienza con la fusión de los gametos. Para ello, el espermatozoide debe ser capaz de encontrar al óvulo, fusionarse con él v transferirle su preciado contenido: un núcleo "haploide", para dar origen a un zigoto. Después de haber completado su desarrollo y maduración el espermatozoide debe reconocer al óvulo y penetrar las capas superficiales que lo recubren. Este proceso es facilitado por la reacción acrosomal (RA), un evento de exocitosis regulada dependiente de Ca2+ que se inicia con la fusión de las membranas plasmática y acrosomal externa en la cabeza del espermatozoide. Dicha fusión expone la membrana acrosomal interna y permite la liberación de las enzimas líticas contenidas en el acrosoma que se requieren para la penetración de las capas externas del óvulo. A pesar de su enorme importancia funcional, muchas de las preguntas fundamentales en tomo a la RA permanecen aún sin respuesta. Sin embargo, diversos estudios en donde se ha empleado como sistema modelo de experimentación, tanto al espermatozoide del erizo de mar como de algunos mamíferos, indican que el incremento de la concentración intracelular de Ca2+ ([Ca2+]i) es uno de los eventos centrales durante la RA12.

A diferencia de lo que ocurre en los animales de fecundación externa como el erizo de mar, el espermatozoide en los mamíferos debe completar un proceso de "capacitación" para poder fecundar al óvulo. Entre otros cambios, la capacitación del espermatozoide maduro incluye modificaciones metabólicas y alteraciones en la permeabilidad de su membrana plasmática a

El Dr. Ricardo Félix es investigador titular del Departamento de Fisiología, Biofísica y Neurociencias del Cinvestav. El M. en C. Alfonso Vega Hernández es auxiliar de investigación en el mismo departamento. La Dra. Claudia L., Treviño es investigadora asociada del Departamento de Genetica y Fisiología Molecular del Instituto de Biotecnología de la UNAM. Dirección electrónica: rfelix@fisio.cinvestav.mx

diversos iones^{3,4}. Aunque la maquinaria celular involucrada en el desarrollo de dichos cambios es heterogénea y requiere de diversos elementos, tal y como se presentará más adelante, estudios recientes indican que el flujo de iones de K⁺ juega un papel muy importante en el desarrollo de la capacitación espermática⁵⁻⁷.

De esta manera, los flujos iónicos en general y los de Ca²+ y K+ en particular resultan ser claves en el diálogo molecular que se establece entre el espermatozoide, su medio ambiente y el óvulo. Actualmente se sabe que una gran variedad de moléculas contribuye a determinar los eventos de transporte iónico en estas células¹.8. Sin embargo, en el presente artículo nos enfocaremos en los flujos iónicos que se llevan a cabo a través de poros hidrofóbicos transmembranales (conocidos como canales iónicos) en las células espermatogénicas y en el espermatozoide maduro de los mamíferos, y analizaremos brevemente algunas de las consecuencias funcionales de su activación.

Canales de Ca²⁺ en el espermatozoide y reacción acrosomal

Como va se mencionó, la RA es un evento exocitótico muy importante que le permite al espermatozoide fecundar al óvulo. Este proceso depende de la composición iónica del medio e involucra aumentos en la permeabilidad a distintos iones, por lo que durante este proceso el espermatozoide se alcaliniza y sufre cambios en el potencial de membrana. En los mamíferos, el factor inductor de la RA es una glucoproteína de la zona pelúcida (ZP) del óvulo, conocida como ZP3. Diversos estudios funcionales en espermatozoides individuales que emplean colorantes fluorescentes han mostrado que la ZP3 es capaz de reproducir el aumento en la [Ca2+]i que precede a la exocitosis acrosomal^{9,11}. Estos experimentos han mostrado además que los cambios en la [Ca2+]i inducidos por la ZP3 ocurren en dos fases distintas, lo cual a su vez ha resultado ser consistente con la participación de al menos dos tipos diferentes de canales de Ca2+ presentes en la membrana plasmática del espermatozoide10. Así, la exposición a ZP3 eleva transitoriamente la [Ca2+]i a niveles micromolares en 40-50 milisegundos, para posteriormente regresar a sus niveles en reposo en los

siguientes 200 milisegundos⁶. Este cambio transitorio de Ca2+ tiene propiedades cinéticas y farmacológicas que son consistentes con las que presentan los canales de Ca2+ sensibles al voltaje del llamado tipo T. Los canales del tipo T se activan con despolarizaciones relativamente pequeñas y dan origen a corrientes de rápida activación e inactivación. Cabe mencionar aquí que además de ser muy pequeños y difíciles de abordar electrofisiológicamente, los espermatozoides representan células terminales incapaces de sintetizar proteínas. Por esta razón, la expresión génica y el ensamble de proteínas requieren ser estudiadas en las células precursoras (espermatogénicas). Utilizando esta estrategia, se ha establecido que las corrientes a través de los canales T son el único tipo de corrientes de Ca2+ sensibles al voltaje que se expresan funcionalmente en las células espermatogénicas durante las etapas tardías de la espermatogénesis de los roedores 12,13. De manera interesante, estas corrientes, la RA y el incremento transitorio en la [Ca2+] i se inhiben con concentraciones micromolares de dihidropiridinas (DHPs), pimozida y Ni²⁺.

Aunque la fase rápida del incremento en la [Ca²⁺]i en el espermatozoide de los mamíferos se debe pro-

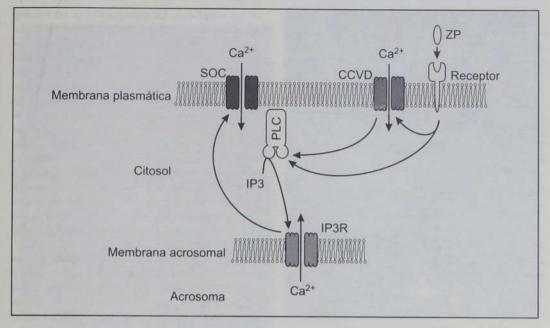
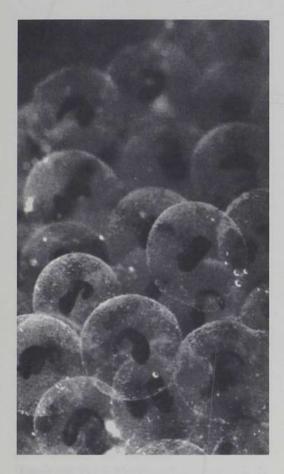


Figura 1. Participación de canales de Ca^{2+} durante la reacción acrosomal en el espermatozoide de los marniferos. La unión de la glucoproteína de la zona pelúcida (ZP) a su receptor da como resultado: (1) Una despolarización de la membrana y un influjo subsecuente de Ca^{2+} a través de un canal de Ca^{2+} dependiente de voltaje (CCVD) y, (2) la activación de la fosfolipasa C (PLC) que conduce a la generación de inositol trifosfato (IP_3). Este segundo mensajero activa a sus receptores (IP_3 R) en la membrana acrosomal, liberándose Ca^{2+} al citosol desde esta poza intracelular. El vaciamiento de este almacén provoca la apertura de canales de Ca^{2+} en la membrana plasmática (SOC). El conjunto de estos eventos conlleva a la reacción acrosomal.

bablemente a la activación de los canales T por la ZP3, la identidad molecular de los canales de Ca2+ sensibles al voltaje relevantes para la RA aún no ha sido establecida de manera definitiva. Esto se debe en gran medida a que estudios iniciales indicaron que las células espermatogénicas producen de manera abundante transcritos para la subunidad $\alpha_{i_{\rm F}}$ y en menor proporción para la subunidades α_{IA} y $\alpha_{IC}^{-12,14}$, las cuales originan diversos tipos de canales de Ca2+ (conocidos en su conjunto como de alto umbral de activación) pero no dan lugar a los canales del tipo T. Sin embargo, recientemente se han identificado las subunidades α_{10} y $\alpha_{_{1H}}$ que dan origen a canales del tipo T en neuronas y otros tipos celulares. El uso de sondas moleculares específicas ha permitido documentar la presencia de α_{10} y α_{IH} en las células espermatogénicas¹⁴, lo que ha llevado a pensar que podrían ser estas proteínas las que codifican para los canales de Ca2+ presentes en estas células así como en el espermatozoide maduro.

Por otro lado, existe evidencia experimental que indica que después de la fase rápida es necesario que exista un aumento lento y sostenido en la [Ca2+]i para que se desarrolle la RA. Esta segunda fase de incremento en la [Ca2+]i inducida por la ZP3 probablemente involucra la liberación de Ca2+ de reservorios intracelulares sensibles al segundo mensajero inositol trifosfato (IP3)15 y una subsecuente entrada de Ca2+ al interior de las células mediada por un tipo particular de canales de Ca2+ presentes en la membrana plasmática conocidos como SOCs (por sus siglas en inglés; store-operated Ca2+ channels16,17, figura 1). Al respecto conviene señalar aquí que el espermatozoide maduro posee receptores al IP3 (IP,R) asociados al acrosoma que entre otras funciones actúa como reservorio para los iones de Ca2+. Estudios de biología molecular han mostrado que a lo largo de la diferenciación espermática se expresan los tres genes de los IP Rs registrados a la fecha y que la distribución de los IP, Rs al nivel de proteína es dinámica durante el

proceso de diferenciación, de tal suerte que además de su posible participación en la RA, los IP₃Rs podrían jugar un papel importante durante la espermatogénesis ¹⁸.


Como ya se mencionó, el aumento transitorio de la [Ca²+] i debido al vaciamiento de los reservorios internos de Ca²+ (inducido por el IP₃) produce una entrada de Ca²+ a través de la membrana plasmática. Este proceso está mediado por SOCs (también llamados canales capacitativos). Estudios recientes han mostrado evidencias de la posible participación de un SOC en la RA¹9 basados en el hecho de que fármacos como la tapsigargina (TAP) y el ácido ciclopiazónico (CPA) (ambos inhibidores de la ATPasa de Ca²+ del retículo endoplásmico) aumentan la [Ca²+] i en presencia de Ca²+ externo. Además, tanto el segundo canal de Ca²+ de la RA como el incremento de Ca²+ inducido por TAP o CPA se inhiben con concentraciones similares de níquel¹7.

Capacitación del espermatozoide maduro

El proceso de capacitación del espermatozoide es un requisito indispensable para que ocurra la fecundación

en los mamíferos. La capacitación es un proceso dinámico v muy complejo que ocurre normalmente en el tracto genital femenino y que incluye, entre otros muchos fenómenos, una modificación en las propiedades de la membrana plasmática que le confieren al espermatozoide la capacidad de responder a los estímulos externos que desencadenan la RA y la subsecuente penetración del óvulo. Existen evidencias experimentales de que la albúmina sérica juega un papel determinante en los cambios membranales que ocurren en el espermatozoide durante la capacitación. Entre otros muchos cambios, se ha visto que la albúmina sérica incrementa la llamada corriente de ventana en las células espermatogénicas de ratón, es decir el influjo de Ca2+ que normalmente se observa durante el reposo²⁰. En contraposición a este efecto estimulatorio, se ha visto que la aplicación de Bestradiol a concentraciones micromolares inhibe significativamente la actividad de los canales de Ca2+ en estas células. Estos resultados sugieren que la albúmina y el estradiol podrían tener un papel muy importante en la regulación de los canales de Ca2+ en las células espermatogénicas y que pudieran asimismo ser importantes en el proceso de capacitación espermática²⁰.

Además de los cambios que ocurren en la [Ca2+]i, uno de los eventos centrales en el proceso de capacitación espermática es el desarrollo de una hiperpolarización de la membrana plasmática, que sabemos se asocia con un eflujo de K+. 1.6.7 Los estudios electrofisiológicos en las células espermatogénicas han resultado también de enorme utilidad para establecer el papel funcional de los canales de K+ durante el proceso de capacitación del espermatozoide. Inicialmente Hagiwara y Kawa mostraron la presencia de una corriente de K+ con características biofísicas y farmacológicas similares a las exhibidas por la corriente a través de canales del tipo rectificador tardío²¹. Mediante estudios moleculares Salvatore y sus colaboradores han encontrado evidencias de la expresión del K 5.1, un miembro de la familia de los canales de K+ del tipo rectificador entrante, en el testículo de la rata. Aunque su función aún no ha sido establecida definitivamente, se piensa que este tipo de canales podría jugar un papel importante durante la espermatogénesis²². De igual manera, Jacob et al. han hecho lo propio para la expresión de canales del tipo Kv1.3 en espermatocitos primarios y espermátidas elongantes²³. Algunos estudios funcionales, por su parte²⁴, han sugerido la presencia de un tipo adicional de canales de K+ activado por el ATP y

sensible a caribdotoxina (CTX) y TEA⁺. Este tipo de corriente puede también activarse por ionóforos de Ca²⁺ sugiriendo que se trata de una comiente a través de los canales de K⁺ activados por Ca²⁺ conocidos como Maxi-K²⁵.

Por último, investigaciones recientes⁷ han mostrado que las células espermatogénicas del ratón a voltajes hiperpolarizantes presentan una corriente entrante no inactivante de rápida activación, sensible al pH_i, cuya magnitud depende del K⁺ externo y que se bloquea con concentraciones micromolares de Cs⁺ y Ba²⁺. La presencia de este tipo de canales abre la posibilidad de que sean precisamente los canales de K⁺ rectificadores entrantes los que determinen el potencial de reposo en las células espermatogénicas y en el espermatozoide maduro⁷. Además, el cambio de pH, que ocurre durante

la capacitación podría activar estos canales e influir de manera importante en el desarrollo de este proceso: antes de la capacitación, el pH en el espermatozoide es relativamente ácido, lo que contribuye a prevenir el estado capacitado, prolongar la viabilidad de las células durante su estancia en el epidídimo y a inhibir la RA espontánea²⁶, mientras que durante la capacitación espermática ocurre un incremento en el pH₁ (>0.2 unidades) como resultado de la activación de dos sistemas intercambiadores de protones26, que podría aumentar ~0.5-3 veces la probabilidad de apertura de los canales rectificadores entrantes²⁷. De esta manera, se ha propuesto que en condiciones fisiológicas el incremento en el pH durante la capacitación podría activar a los canales de K+ rectificadores entrantes permitiendo de esta manera un eflujo de iones K+, llevando el potencial de reposo del espermatozoide hacia el potencial de equilibrio para este ion e hiperpolarizando consecuentemente la membrana plasmática de las células7.

Motilidad espermática

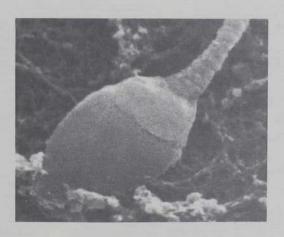
Está claramente demostrado que los cambios en la [Ca²+]i son críticos no sólo para la capacitación espermática y la RA sino que también juegan un papel determinante en la motilidad espermática. Así, el movimiento flagelar se activa cuando el espermatozoide es liberado del epidídimo caudal; sin embargo, este proceso se hace mucho más aparente después de la inseminación en donde un proceso llamado hiperactivación confiere al espermatozoide la capacidad de desprenderse de la mucosa del oviducto y penetrar la zona pelúcida del óvulo²8. Durante la hiperactivación ocurren fluctuaciones en la [Ca²+]i, principalmente en la región media del flagelo del espermatozoide, las cuales se asocian a oscilaciones en la frecuencia del ciclo o movimiento flagelar²9.

A diferencia de lo que ocurre en la capacitación y la RA, los canales iónicos activados por nucleótidos cíclicos han sido consistentemente implicados en la señalización intracelular que origina el movimiento flagelar en el espermatozoide. En 1994 Weyand y sus colaboradores identificaron y clonaron el primer canal activado por nucleótidos cíclicos o CNG (por sus siglas en inglés: cyclic nucleotide-gated channels) presente en el espermatozoide de mamífero³⁰. La expresión heteróloga de los canales CNG^{30,31} ha mostrado que pueden ser activados

tanto por AMPc como por GMPc, y que son permeables a los iones de Ca²⁺. Los estudios inmunológicos han mostrado que la expresión de los canales CNG del espermatozoide está restringida al flagelo, y los estudios funcionales sugieren que este tipo de canales puede ser el encargado de generar los microdominios de Ca²⁺ que constituyen las bases moleculares del control del movimiento flagelar²¹.

Recientemente, se ha registrado la clonación y expresión de un canal catiónico muy singular en el espermatozoide de los mamíferos. Este canal, al que se ha llamado CatSper^{32,33} (cation channel of sperm) posee una estructura que semeja grandemente la arquitectura molecular de la subunidad conductora de iones de los canales de K+ sensibles al voltaje. Sin embargo, las características de selectividad iónica indican que se trata de un canal de Ca2+. Asimismo, los estudios funcionales muestran que este canal es sensible a análogos permeables de AMPc y GMPc. De manera por demás interesante, la expresión de los canales CatSper está restringida al testículo y en particular a las células espermatogénicas postmeióticas. Además, en el espermatozoide maduro los canales se localizan solamente en el flagelo, lo que sugirió inicialmente que podían participar en la regulación de la motilidad espermática. Esto fue corroborado mediante la inactivación del gene CatSper en el ratón, en donde los animales CatSper -/- resultaron ser infértiles debido principalmente a la incapacidad de sus espermatozoides de alcanzar y mantener patrones normales de motilidad así como a su incapacidad para penetrar la zona pelúcida del óvulo³².

Comentario final


Pese a que muchas de las preguntas fundamentales en tomo a la importancia funcional del movimiento de iones a través de la membrana plasmática de los gametos no han sido aún contestadas satisfactoriamente, el correlacionar la presencia de los canales iónicos que generan dichos flujos con su estado funcional, tanto en las células espermatógenicas como en el espermatozoide maduro, está incidiendo positivamente en un mejor entendimiento de su participación en los procesos de diferenciación, activación, capacitación y reacción acrosomal.

Notas

- A. Darszon, P. Labarca, T. Nishigaki et al., Physiol. Rev. 79, 481 (1999).
- S.J. Publicover y C.L. Barratt, Hum. Reprod. 14, 873 (1999).
- 3. P.E. Visconti, H. Galantino-Homer, G.D. Moore et al., J. Androl. 19, 242 (1998).
- 4. E. Baldi, M. Luconi, L. Bonaccorsi et al., Front. Biosci. 5, E110 (2000).
- Y. Zeng, E.N. Clark y H.M. Florman, Dev. Biol. 171, 554 (1995).
- C. Arnoult, I.G. Kazam, P.E. Visconti et al., Proc. Natl. Acad. Sci. USA 96, 6757 (1999).
- 7. C. Muñoz-Garay, J.L. De la Vega-Beltrán, R. Delgado et al., Dev. Biol. 234, 261 (2001).
- 8. E. Baldi, M. Luconi, L. Bonaccorsi et al., Front. Biosci. 1, d189 (1996).
- H.M. Florman, R.M. Tombes, N.L. First et al., Dev. Biol. 135, 133 (1989).
- 10. H.M. Florman, Dev. Biol. 165, 152 (1994).
- B.T. Storey, C.L. Hourani y J.B.A. Kim, Mol. Reprod. Dev. 32, 41 (1992).
- 12. A. Liévano, C.M. Santi, C.J. Serrano et al., FEBS Lett. **388**, 150 (1996).
- 13. C. Arnoult, R.A. Cardullo, J.R. Lemos *et al.*, *Proc. Natl. Acad. Sci. USA* **93**, 13004 (1996).
- 14. F. Espinosa, I. López-González, C.J. Serrano et al., Dev. Genet. 25, 103 (1999).
- 15. L.D. Walensky y S.H. Snyder, *J. Cell Biol.* **130**, 857 (1995).
- 16. M.K. Jungnickel, H. Marrero, L. Birnbaumer et al., Nat. Cell Biol. 3, 499 (2001).

- 17. C.M. O'Toole, C. Arnoult, A. Darszon *et al.*, *Mol. Biol. Cell* **11**,1571 (2000).
- C.L. Treviño, C.M. Santi, C. Beltrán et al., Zygote.
 6,159 (1998).
- C.M. Santi, T. Santos, A. Hernández-Cruz et al., J. Gen. Physiol. 112, 33 (1998).
- 20. F. Espinosa, I. López-González, C. Muñoz-Garay et al., FEBS Lett. 475, 251 (2000).
- 21. S. Hagiwara y K. Kawa, J. Physiol. 356, 135 (1984).
- L. Salvatore, M.C. D'Adamo, R. Polishchuk et al., FEBS Lett. 449, 146 (1999).
- A. Jacob, I.R. Hurley, L.O. Goodwin et al., Mol. Hum. Reprod. 6, 303 (2000).
- H.C. Chan, W.L. Wu, Y.P. Sun et al., FEBS Lett.
 438, 177 (1998).
- 25. W.L. Wu, S.C. So, Y.P. Sun et al., Biochim. Biophys. Acta 1373, 360 (1998).
- Y. Zeng, J.A. Oberdorf y H.M. Florman. *Dev. Biol.* 173, 510 (1996).
- 27. Z. Qu, G. Zhu, Z. Yang et al., J. Biol. Chem. 274, 13783 (1999).

- 28. S.S. Suarez, J. Androl. 17, 331 (1996).
- 29. S.S. Suarez y X. Dai, Mol. Reprod. Dev. **42**, 325 (1995).
- I. Weyand, M. Godde, S. Frings et al., Nature 368, 859 (1994).
- 31. B. Wiesner, J. Weiner, R. Middendorff et al., J. Cell Biol. **142**, 473 (1998).
- 32. D. Ren, B. Navarro, G. Pérez et al., Nature **413**, 603 (2001).
- T.A. Quill, D. Ren, D.E. Clapham et al., Proc. Natl. Acad. Sci. USA 98, 12527 (2001).

SYMPOSIUM OF PROBABILITY AND SPSP STOCHASTIC PROCESSES

Antiguo Colegio de San Ildefonso, Mexico City

June 23 to June 28, 2002

Courses:

Fractional brownian motion

David Nucleart

Universitat de Barcelona

Entropy and economic equilibrium

Esa Nummelin

University of Helsinki

Pricing of financial derivatives in standard and nonstandard models Winfried Stute University of Glessen

Invited talks by:

María Emilia Caballero
IMUNAM
Begoña Fernández
Facultad de Ciencias-UNAM
Jin Ma
Purdue University
Philip Protter
Cornell University
Jaime San Martín
Universidad de Chile

Organizing Committee:

José M. González-Barrios, IIMAS-UNAM gonzaba@sigma.iimas.unam.mx
Jorge A. León, CINVESTAV
jleon@math.cinvestav.mx
Ana Meda, Facultad de Ciencias-UNAM amg@hp.fciencias.unam.mx
For more information:
http://probabilidad.org.mx

La ciencia mexicana: planes que se conviertan en hechos

Alfredo Herrera Estrella

En nombre de mis colegas Leonardo Náuhmitl López Luján, Omar Raúl Masera Cerutti, Humberto Terrones Maldonado y el mío propio deseo expresar nuestro agradecimiento a la comunidad científica nacional por la distinción que hoy nos otorga y por la oportunidad de dirigirles este mensaje.

Esta distinción, otorgada por la Academia Mexicana de Ciencias, representa un motivo de enome satisfacción no sólo por tratarse del mayor reconocimiento que se otorga en México a investigadores menores de 40 años, sino por el aliciente que representa para realizar nuestro mejor esfuerzo en el compromiso que hoy reiteramos con las instituciones donde laboramos y con nuestro país.

Permítanme hacer un breve reconocimiento a quienes me han permitido llegar hasta aquí. Un punto fundamental para mí ha sido la educación ofrecida por el Estado, ya que soy un producto neto de la educación popular, sin la cual no estaría compartiendo estos momentos con ustedes. Soy también el producto de la convergencia de una serie de esfuerzos entre los que se incluye el de maestros que me llevaron por el camino de la búsqueda de la verdad, el de mis colaboradores y amigos, el de un científico ejemplar (mi hermano) y el de un padre cuya única preocupación era dejarnos el mejor de los legados, una educación sólida, por lo que luchó toda su vida al lado de una mujer sin igual (mi madre). Finalmente, debo reconocer el milagro de la clonación humana, ya que gracias a protocolos del dominio público he logrado dos muy exitosos eventos de clonación, quienes

El Dr. Alfredo Herrra Estrella es investigador titular de la Unidad Irapuato del Cinvestav. Este texto fue leido en la ceremonia de entrega de los Premios de Investigación 2000 en la residencia oficial de Los Pinos, 14 de diciembre de 2001. Dirección electrónica: aherrera@ira.cinvestav.mx

junto con mi esposa me han brindado todo su apoyo y han soportado los sacrificios que implica esta carrera.

Una vez hecho este paréntesis, debo destacar que los que hoy recibimos esta distinción creemos haber logrado contribuir al desarrollo del conocimiento, a pesar de haber sufrido durante tres cuartas partes de nuestras vidas repetidas crisis económicas de nuestro país, reflejadas en una inflación de aproximadamente 390,000%, que incluyen una de las crisis más graves en años recientes con una inflación del 255%, y por lo tanto conduciendo a una gran incertidumbre para nuestro desarrollo profesional. Este hecho me llena de un profundo orgullo que no puedo ocultar, pero mi mayor orgullo es haber respondido al esfuerzo de todos aquellos que me apoyaron aun bajo circunstancias muy adversas, sin olvidar al pueblo mexicano.

Hoy México atraviesa por un acelerado proceso de cambio. Nuestros esfuerzos como científicos están encaminados a la generación de conocimientos, sin los cuales no podremos competir en este mundo moderno. Una de las mayores preocupaciones que enfrentamos es saber si formamos parte de una comunidad científica lo suficientemente fuerte y madura para atender estos retos. Si bien en México hemos aprendido a hacer ciencia del más alto nivel, si queremos avanzar en los procesos de crecimiento económico y mejoramiento de la calidad de vida y acortar la brecha existente con los estándares de los países más avanzados, estamos obligados a promover todas las posibilidades y formas del conocimiento científico. Hoy la investigación científica tiene tal importancia en nuestro país que itan solo hemos tenido que esperar catorce meses para la entrega de este reconocimiento! La ciencia no debe seguir siendo vista como la actividad aislada de un pequeño grupo, sino como la búsqueda de la verdad, la fuente de la racionalidad, la fuente de la representación, construcción y avance de nuestra sociedad. Todo esfuerzo en favor de la ciencia debe ser percibido como una contribución al fortalecimiento de nuestra sociedad y al meioramiento de nuestra calidad de vida

Una de las primeras necesidades existentes es la masificación de la comunidad científica. Hoy, según el Sistema Nacional de Investigadores, en el país hay aproximadamente 7500 investigadores que participan en las más diversas disciplinas del conocimiento. Lo anterior significa que contamos con 7 u 8 investigadores por cada 100 000 habitantes de nuestro país, lo que representa un

índice inferior incluso que el encontrado en varios países de Centro y Sud América y que definitivamente no es comparable al de países altamente desarrollados. Estos datos son aún más escalofriantes si consideramos que a 30 años de su creación, el Consejo Nacional de Ciencia y Tecnología ha financiado los estudios de posgrado o especialización de alrededor de 100 000 mexicanos. Hoy nos preguntamos donde está el restante 92.5 % de los potenciales investigadores financiados y que desgraciadamente nadie nos puede dar la respuesta. Sin embargo, no podemos ni debemos culpar al Consejo Nacional de Ciencia y Tecnología, sino a la carencia de una política científica real y funcional que permita dar seguimiento a los jóvenes investigadores, que permita completar un ciclo desde la captación hasta la consolidación de los nuevos

investigadores. También debemos considerar que el sector empresarial nacional está acostumbrado a importar el conocimiento, quizás por ser más económico al corto plazo. Sin embargo, debemos considerar que la única opción para ser competitivos en un mundo global es transformamos de un país consumidor de tecnología a ser una nación exportadora de conocimiento. Se debe romper con otros vicios tales como el centralismo, ya que hoy en día más de la mitad de los investigadores activos están concentrados en las instituciones públicas del Distrito Federal. Mientras tanto, la gran mayoría de las universidades de los Estados no han reconocido la necesidad de desarrollar la investigación científica o no cuentan con la infraestructura necesaria; los pocos grupos que han intentado establecer esta nueva filosofía enfrentan grandes problemas administrativos o de costumbres. Esperamos, Sr. Presidente, que los planes se conviertan en hechos.

Para el buen desarrollo de la ciencia en nuestro país se requiere que se incrementen los recursos destinados para ello, ya que actualmente se destina aproximadamente un 0.3 a 0.4% del Producto Interno Bruto (PIB). mientras que se requiere idealmente entre el 1.5 y el 2 %. Necesitamos que el gasto destinado a investigación realmente se aplique para ello. Reducir, o incluso mantener el nivel actual del presupuesto destinado a la ciencia, significaría arrebatarle al pueblo mexicano la oportunidad de mejorar su calidad de vida. Necesitamos evitar crisis recurrentes, que incluso hoy sufrimos en la ciencia debido a nuestra total dependencia de financiamiento externo para la realización de la investigación científica. Debemos dejar de pensar en investigación básica e investigación aplicada y sólo pensar en investigación de calidad. Estamos obligados a romper con la barrera de la falta de comunicación con la sociedad en general y crear una cultura científica por medio de educación de calidad, una educación que nos lleve no solo a estar informados sino también al análisis crítico de la información. Hoy señor Presidente, hoy un pueblo lleno de ilusiones y entusiasmo. hoy nos lo reclama.

Sólo me resta a nombre de mis compañeros galardonados y el mío propio, agradecerles por su compañía en este acto y por su amable atención.

PROGRAMA DE VISITAS DE PROFESORES DISTINGUIDOS, AMC-FUMEC

La Academia Mexicana de Ciencias (AMC) y la Fundación México-Estados Unidos para la Ciencia (FUMEC) convocan al programa de visitas de 10 profesores distinguidos para realizar estancias cortas en México (seminarios, cursos, asesorías, establecimiento de contacto para iniciar colaboraciones y estancias cortas de investigación) entre junio de 2002 y febrero de 2003 bajo las siguientes bases:

- Podrán ser candidatos aquellos profesores o investigadores radicados en los Estados Unidos de América, de reconocido prestigio y con liderazgo internacional en su disciplina.
- Las propuestas deberán ser enviadas a las oficinas de la Academia Mexicana de Ciencias dirigidas al Comité de Evaluación, incluyendo la siguiente documentación;
- a) Forma AMC-PD (proporcionada por la Academia o también disponible en Internet: http://www.amc.unam.mx/Asuntos Internacionales/fumec.html).
- b) Curriculum vitae completo, incluyendo lista de publicaciones del profesor invitado.
- c) Plan de trabajo detallado para la visita (especificando el impacto que la visita del profesor invitado tendrá en la comunidad científica de México).
- d) Copia de la carta de invitación del anfitrión avalada por su institución y fechas probables de la visita. La carta de invitación deberá especificar que el candidato entrará a un concurso de selección y no deberá hacerse mención anticipada respecto al otorgamiento de los recursos por parte tanto de la AMC como de la FUMEC.
- e) Carta de aceptación del candidato, aceptando el plan de trabajo propuesto o sugiriendo su propio plan de trabajo.
- 3. La Academia Mexicana de Ciencias y la Fundación México-Estados Unidos para la Ciencia aportarán la cantidad de \$200.00 dólares americanos por día para sufragar los gastos de estancia del profesor invitado, hasta un máximo de diez días. El programa no cubre los gastos de pasaje.
- Los candidatos propuestos serán dictaminados por un Comité ad-hoc nombrado por la Academia Mexicana de Ciencias.
- La difusión, las publicaciones o productos de investigación resultado de este programa harán mención explícita de los organismos patrocinadores.
- La institución anfitriona deberá entregar un breve informe a la Academia, sobre las actividades realizadas durante la visita.
- 7. El apoyo otorgado a los candidatos será personal e intransferible.
- Toda la documentación deberá ser entregada a más tardar el viernes 5 de abril de 2002 en las oficinas de la Academia, Av. San Jerónimo 260, Col. Jardines del Pedregal, México, D.F. 04500, o al Km. 23.5 Carretera Federal México-Cuernavaca, (Casa Tlalpan) San Andrés Totoltepec, Tlalpan, México, D.F., C.P. 14400 entre las 10:00 y las 18:00 horas de lunes a viernes.

Mayor información: Act. Claudía Jiménez Sría. Técnica de Asuntos Académicos, AMC. Tel. (5)616 42 83, (5)849 51 09, Fax: (5)550 1143, (5)849 51 12 e-mail: claujv@ servidor.unam.mx http://www.amc.unam.mx/Asuntos_internacionales/fumec.html

Tres consecuencias del Proyecto Genoma

Antonio R. Navarro y Jorge Estrella

El Proyecto Genoma (PG), un proyecto científico internacional iniciado formalmente en octubre de 1990, es coordinado internacionalmente por la Human Genoma Organization (HUGO) y fue firmado por los National Institutes of Health de Estados Unidos, la European Commission en Europa y el National Research Council en el Reino Unido. El objetivo de este proyecto recae en dos aspectos fundamentales: el mapeado y el secuenciamiento de los genes humanos. El mapeado de genes consiste en descubrir y ubicar en los cromosomas todos los genes que componen el genoma humano y el secuenciamiento consiste en determinar la secuencia completa de los 3 mil millones de bases del ADN humano.

El Proyecto Genoma está abriendo las puertas al hombre para conocer a nivel molecular los secretos de la vida. La biología puede ser la ciencia más importante del siglo XXI. La vida, tanto tiempo vista como un proceso guiado por la mano invisible de la selección natural, es ahora imaginada como un medio con posibilidades de borar genes, reinventar e intercambiar ADN entre especies, etc. La diversidad de formas que la vida puede tener parece infinita.

La revolución biotecnológica generada por el PG remodelará la economía mundial y transformará el medio ambiente terráqueo. La biodiversidad se está modificando considerablemente con la liberación de animales transgénicos, plantas resistentes a pesticidas, etc. El concepto de la naturaleza humana sufrirá cambios profundos, el hombre está transformando su situación de "producto

El Dr. Antonio R. Navarro es director del Instituto de Biotecnología de la Univesidad Nacional de Tucumán, Argentina. El Dr. Jorge Estrella es profesor titular de Epistemología de las Ciencias de esta misma universidad. Dirección electrónica: biotec@unt.edu.ar

de la evolución" a artífice de un "proceso creativo". En este nuevo siglo, el hombre producirá un segundo génesis, sembrará la biosfera con vida nueva concebida en el laboratorio.

En lo que sigue destacaremos tres consecuencias visibles que traerán las investigaciones del PG: (1) la transformación de la medicina; (2) el desarrollo de un nuevo "autoconocimiento" por parte del hombre; (3) el afianzamiento de una interpretación del saber humano como aventura sin término.

Transformación de la medicina

Entre las áreas de la ciencia que mayores avances lograrán como consecuencia del PG, sin duda la medicina ocupa el primer lugar. Estamos entrando a la era de la "medicina molecular", caracterizada por tratar las causas de la enfermedad y no sus síntomas. El conocimiento del genoma del hombre y de los microorganismos permitirá mejorar el diagnóstico de enfermedades, detectar la predisposición a enfermedades hereditarias, diseñar drogas sin efectos colaterales y realizar terapias genéticas. La predicción y prevención de enfermedades será lo más importante: hoy se sabe que más de 4000 enfermedades son causadas por fallas de genes simples, sólo 50 afecciones son responsables del 90% de las enfermedades y muertes humanas. Si se logra una cura para estas enfermedades, el índice de crecimiento poblacional se incrementará, así como los requerimientos de alimentación; será necesario recurrir entonces al genoma de los microorganismos animales y plantas para mantener los ecosistemas y producir todo el alimento necesario.

Se está descifrando el genoma de los microorganismos, incluyendo los patógenos que son responsables de millones de muertes al año, y esto permitirá el desarrollo de nuevos antibióticos. La genómica microbiana ayudará a los investigadores farmacéuticos a lograr una mejor comprensión de cómo los microorganismos patógenos producen las enfermedades. El secuenciamiento del genoma de estos microbios será muy útil para revelar su vulnerabilidad e identificar objetivos para drogas nuevas. Esto permitirá a su vez diseñar drogas que ataquen enfermedades hasta ahora incurables.

La investigación del genoma producirá importantes avances en el conocimiento de la antropología, la

evolución y el estudio de las migraciones humanas. Las técnicas de biología molecular desarrolladas en el proyecto genoma permiten (cada día en menor tiempo y costo) realizar estudios forenses para identificar personas; determinar la paternidad; identificar especies en peligro y protegidas; hacer estudios de histo-compatibilidad; determinar pedigree en semillas y ganado; autentificar productos de consumo, etc. La agricultura y la ganadería se beneficiarán con el desarrollo de cultivos resistentes a las enfermedades, de animales de granja más saludables y productivos, así como productos más nutritivos y el control biológico de plagas, etc.

Cada individuo es único y una medicina que es efectiva para unos puede ser dañina para otros; se estima que en EUA son hospitalizadas dos millones de personas al año por reacciones adversas de medicamentos, cien mil de ellas mueren. El conocimiento de genoma de cada persona permitirá diseñar drogas "hechas a la medida", con pocos o ningún efecto secundario. Un ejemplo de esto es

la enfermedad de Alzheimer; los pacientes que presentan una variante genética llamada ApoE-4 tienen menos posibilidades de beneficiarse con el uso de determinados fármacos que los enfermos que no presentan esa variante.

Los blancos, es decir las partes de las moléculas biológicas que pueden ser atacadas por las drogas, se multiplican por miles; el conocimiento del genoma humano favorecerá el desarrollo de una millonaria industria farmacéutica.

Está naciendo la "farmacogenética", ciencia que permitirá que se administren medicamentos según el perfil genético de cada paciente. Se estima que en cinco años será habitual que los pacientes se sometan a pruebas genéticas antes que el médico decida qué fármaco debe prescribir.

La farmacogenética en un concepto más amplio, tiene como objetivo descubrir las bases genéticas y los mecanismos moleculares de la enfermedad para definir los objetivos terapéuticos a nivel molecular y desarrollar fármacos específicos.

La terapia genética se muestra como una técnica muy prometedora de la medicina molecular, se utilizan los mismos genes como medicinas, y es de aplicación directa cuando se trata de desórdenes en genes simples, tales como la fibrosis quística y la distrofia muscular. Se trata de reemplazar el gen anormal por uno sano. La introducción de los genes se realiza por medio de un "vector", que puede ser un virus al que se le ha eliminado su patogenicidad. Con este abordaje se erradica la causa de la enfermedad, en lugar de eliminar los síntomas. Otras enfermedades hereditarias como cáncer, diabetes y esquizofrenia, involucran interacciones complejas entre varios genes y al presente no son tratables por terapia genética.

Los científicos conocen hoy la función de unos 7,000 de los 30,000 genes humanos. Sin embargo, conocer y describir todas las redes de interrelaciones entre los genes, los tejidos, los órganos, los organismos y el medio ambiente, más las perturbaciones que disparan las mutaciones genéticas y las respuestas fenotípicas y encontrar las complicadas relaciones entre genética y enfermedad, es una tarea compleja donde todavía falta mucho por resolver.

Patentes

Uno de los temas más controversiales que surgieron del PG es el reclamo de propiedad de los genes que se están descubriendo y su patentabilidad. La mayoría de la comunidad científica considera que los genes no son patentables, que deben ser considerados patrimonio de la humanidad. No parece ética la patentabilidad de una secuencia de ADN humano por cuanto puede impedir el libre acceso al conocimiento de la base genética del mundo natural, que es fundamental para la creatividad investigadora.

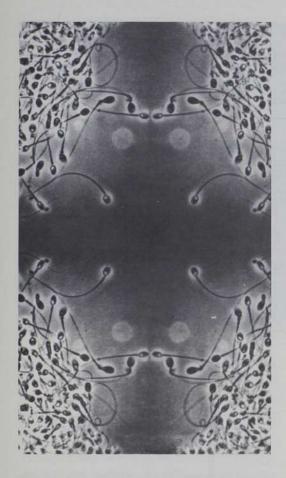
Ya en 1991, S. C. Venter presentó en la oficina de patentes de los Estados Unidos una solicitud para patentar 337 nuevos genes humanos. Argumentó que patentar genes no equivale a patentar materia viva, puesto que el poner un conjunto de genes humanos en un tubo de ensayo no engendraría vida; además, que un fragmento más o menos largo de ADN se puede sintetizar químicamente en el laboratorio, en cuyo caso se trataría de patentar una molécula química y eso es perfectamente posible.

Para los laboratorios farmacéuticos, la necesidad de patentar las potenciales aplicaciones de un gen se justifica como una forma de salvar las inversiones en investigación.

Entre 1981 y 1995 se concedieron 1,175 patentes mundiales de secuencias de ADN humano. Las secuencias patentadas son de tipo muy variado: desde cebadores para uso diagnóstico hasta genes guiméricos construidos artificialmente para sintetizar moléculas híbridas de interleuquinas e interferón. De esas patentes, 900 se concedieron a 213 compañías del sector privado, 200 a instituciones públicas y el resto a título individual. Un alto porcentaje de estas patentes fueron registradas en las oficinas de patentes de Europa, Estados Unidos y Japón; en Europa se encuentra el 50% del total y de ésas el 80% pertenecen a compañías privadas. En Estados Unidos la Universidad de California tiene mas de 200 patentes de genes y el Departamento de Salud tiene 813; Incyte Genomics tiene presentadas 50,000 solicitudes para patentar genes completos o parciales.

Además de patentar genes humanos, muchas organizaciones pretenden patentar genes de plantas y animales; incluso ya existen solicitudes para genes de arroz, genes de eucalipto y genes de araña. Para los países en vías de desarrollo el Proyecto Genoma genera expectativas diferentes a las observadas en los países desarrollados y que siguen un patrón de intereses económicos. Las prioridades de los primeros son: uso de plantas transgénicas para incrementar la cosecha de alimentos, vacunas contra enfermedades como la tuber-

culosis y la malaria. El genoma humano no es tan importante como el de los parásitos, bacterias y virus que enferman a la gente y sus animales y cultivos.


Genoma humano y autoconocimiento

Quizás la primera pregunta que comenzó a perfilamos como seres humanos haya sido la que todos nos hicimos alguna vez: ¿quién soy?, ¿qué hago en este mundo? O, en términos más generales, ¿qué es el hombre? En ese preguntar el lenguaje abandona su función descriptiva (que también usan los animales), se flecta sobre su dueño e inquiere por él. Acto de autorreferencia, ensayo de autoconocimiento, donde esa realidad que es cada quien hace un giro de trescientos sesenta grados y se pone ante sí mismo para entenderse.

Las respuestas iniciales abundaron. Todas ellas tuvieron un carácter mágico: los hombres se tranquilizaron poblando el entorno de duendes y dioses, de reverencias y súplicas. Acallaron su desamparo con pedidos, invocaciones y artimañas para manipular lo sagrado. El mundo tenía un sentido proveniente de esa sacralidad. Y cada quien sabía cuál era su papel en la vasta apariencia de los días. Probablemente esta historia comenzó hace unos diez millones de años. Pero sólo dos mil quinientos años atrás nació en Grecia, por primera vez, un impulso sostenido por ver y entender los asuntos de otro modo. La apuesta en la razón y en el control por la experiencia de sus creencias hizo nacer eso que llamamos ciencia. Su consolidación debió esperar los tiempos modernos y hoy la humanidad vive en una consistente burbuja cultural nacida desde ella.

La humanidad asiste hoy a la revelación —nunca completa— de su propia historia y de su por qué en este mundo. No es un evangelio, no trae buenas nuevas ni proviene de los dioses. Se trata de un texto laico escrito sobre la base de sólo cuatro letras bioquímicas. Es la lectura completa del genoma humano cumplida el año dos mil. Y nos revela no sólo nuestro origen sino también el de toda vida sobre la Tierra.

El genoma de nuestra especie (como los de otras) tiene algunas propiedades notables. Se trata de un "libro

inteligente" que puede fotocopiarse y leerse a sí mismo (operaciones conocidas como replicación y traducción, respectivamente). Alojado en los 23 pares de cromosomas, nuestro genoma registra la historia de los ancestros más remotos. Sin embargo, se trata de un libro inteligente que contiene repeticiones, errores peligrosos, genes "saltarines" que desbaratan la organización de genes "buenos" cargado de párrafos largos que resultan de acoples, traslados, ensambles antojadizos, al punto que el 97% de su largo texto no se usa para darnos nacimiento y conservamos con vida. Precisamente la formidable inteligencia de este libro se revela en su capacidad para eludir ese 97% y para utilizar sólo el 3% restante con información adecuada, en su enigmático talento para bloquear la mayor parte de los elementos dañinos a nuestra vida que él mismo contiene. Sin embargo, ese laberinto

mayoritario (sojuzgado por un grupo mínimo del 3% de genes que se "alzaron con el poder" dentro del ADN) registra dos asuntos antagónicos importantes: la historia de nuestra especie y de la evolución desde los orígenes de la vida, por un lado, y la "huella dactilar" la marca genética propia de cada individuo, por otro. Es a partir de esa marca personal que la justicia viene —desde 1988— exculpando a inocentes e incriminando a culpables por el examen de sus ADN.

Y aún los elementos espirituales de nuestro comportamiento —aquellos propios de nuestro carácter—parecen encontrar su origen en la actividad del ADN. En su estimulante libro Genoma¹, Matt Ridley sostiene: "La escasez de dopamina en el cerebro produce una personalidad indecisa y rígida que ni siquiera es capaz de iniciar el propio movimiento del cuerpo. En su forma extrema, esto se conoce como enfermedad de Parkinson... la dopamina es quizá la sustancia química de la motivación". Y la ruta de la dopamina está trazada por el gen D4DR, ubicado en el brazo corto del cromosoma 11.

Biblia es una palabra griega que significa libro. El libro por antonomasia pasó a ser en Occidente el volumen que reune los textos sagrados de la tradición hebrea y la cristiana (antiguo y nuevo testamento). La humanidad cuenta desde ahora con otra biblia. Y la interpretación del nuevo texto no estará en manos de profetas, clérigos o teólogos: el ejercicio acelerado de autognosis que ejercita hoy nuestra especie, con mejores armas que nunca, está en manos de científicos.

Trae respuestas y muchas preguntas nuevas. Por ejemplo, aunque compartimos casi todo nuestro ADN con chimpancés, gorilas y orangutanes, sólo nosotros tenemos 23 pares de cromosomas, ellos 24. ¿Es eso significativo para las diferencias que nos separan de nuestros parientes cercanos? Aún no lo sabemos. Y el éxito biótico que hoy nos hace dueños del planeta (300 millones de toneladas de biomasa humana van y vienen por la Tierra) contrasta con nuestro pasado de fracasos. Leamos este breve resumen de esos fracasos hecha por Ridley2: "Somos simios, un grupo que casi se extinguió hace quince millones de años compitiendo con los monos mejor diseñados. Somos primates, un grupo de mamíferos que casi se extinguió hace cuarenta y cinco millones de años compitiendo con los roedores mejor diseñados. Somos tetrápodos sinápsidos, un grupo de reptiles que

casi se extinguió hace doscientos millones de años compitiendo con los dinosaurios mejor diseñados. Descendemos de peces con patas que casi se extinguieron hace trescientos sesenta millones de años compitiendo con los peces de aletas radiadas. Somos cordados, un filo que sobrevivió por los pelos a la era cámbrica hace quinientos millones de años compitiendo con los artrópodos, brillantes triunfadores. Nuestro éxito ecológico se dio a pesar de todos los factores humillantes en contra".

Es decir, que la nueva autognosis, asumida desde la ciencia por la humanidad de hoy, la está llevando a descubrirse pariente cada vez más cercana del resto de lo viviente. Y la cosmología contemporánea prolonga ese parentesco hacia el resto del universo, también él sometido a una evolución a partir del Big-Bang y cuyos períodos significativos están siendo delineados por los nuevos conocimientos.

Al hombre actual le costará cada vez más asumir —como hicieron nuestros ancestros— que tiene un lugar de privilegio en el universo. Por primera vez testigo de la aventura cósmica que condujo a su aparición, el hombre de hoy enfrenta la dura tarea de buscar respuestas que den sentido a su existencia, a su destino personal y

colectivo. Y tales respuestas han de ser congruentes con la información consistente, nacida desde el conocimiento.

El conocimiento: aventura sin término

En los tiempos modernos el movimiento de la Ilustración retomó en Europa el antiguo ideal griego de conocimiento y las distintas ciencias iniciaron un crecimiento vigoroso. Heredero de la Ilustración, el siglo XX acumuló más conocimiento que la humanidad a lo largo de toda su estancia en la Tierra. Somos testigos hoy —y el programa Genoma Humano es una muestra clara de ello— de la vasta acumulación de informaciones sobre aspectos del universo. La enciclopedia se ha vuelto difícil de editar: en el trámite de su impresión algo ha variado y sus contenidos quedan inactuales. Inténtese, por ejemplo, leer un texto de biología con más de 20 años y se notará su antigüedad, su desactualización.

¿Hasta dónde crecerán los conocimientos? ¿Acaso no hay una "versión final" para cada asunto? La suma de las informaciones procedentes de las distintas ciencias, ¿no acabarán formando un aceptable "mapa último" del universo, no modificable por futuros hallazgos? La respuesta afirmativa ha sido siempre una tentación para el sentido común y también para muchos científicos. "Quizás se vislumbre va el final de los físicos teóricos". sostiene Hawking refiriéndose al logro próximo de una "teoría unificada completa"1. Pero esa interpretación olvida que cuando la ciencia resuelve un problema, un número mayor de otros nuevos aparece. Todo ocurre como si los saberes estuviesen contenidos en una esfera cuyo interior crece... pero al hacerlo también crece la zona de contacto con el exterior desconocido. Desde los hallazgos de Mendel (fines del siglo XIX) al descubrimiento del ADN hacia mediados del siglo XX y desde entonces hasta hoy, los conocimientos no han cesado de aumentar. v también aumentaron los interrogantes.

Sin duda hoy se sabe mucho más que Mendel sobre genética. Pero es tan enorme esa información, que sus múltiples frentes de crecimiento han descubierto realidades insospechadas. Y su desciframiento generará nuevos conocimientos, sin duda, a partir de los cuales tendremos nuevas preguntas a resolver.

La transcripción completa del genoma humano cumplida por el PG era una aspiración remota en la década del 90. Hoy es una realidad. Pero este nuevo cúmulo de información se abre a la tarea de identificar en los 30 mil genes hallados sus funciones, conexiones recíprocas, dependencia de las condiciones ambientales en que vive el organismo portador, etc. Al parecer, el proyecto Genoma Humano está mostrando argumentos a favor de una interpretación del conocimiento humano como aventura sin término.

Interrogantes finales

Como se ve, el PG nos enfrenta al menos con estos interrogantes inevitables: ¿Servirán los genes para explicar aspectos espirituales del hombre como la culpa, la responsabilidad, los talentos, el poder, los privilegios, la moralidad? ¿Se dejará tentar la humanidad por un mundo donde los niños se diseñen genéticamente en úteros artificiales y donde las personas se clasifiquen e identifiquen según su genotipo? ¿Serán privilegiadas nuevas formas totalitarias de organización social a partir de una "programación genética"?

Notas

- S. Hawking, Agujeros negros y pequeños universos (Planeta, México, 1994).
- 2. M. Ridley, Genoma (Taurus, Madrid, 2000).

LA DIVISIÓN DE PARTÍCULAS Y CAMPOS DE LA SOCIEDAD MEXICANA DE FÍSICA

A LA MEDALLA 2002 DE LA DPC

La Medalla 2002 de la División de Partículas y Campos de la Sociedad Mexicana de Física (DPC-SMF) se otorgará a un investigador que haya contribuido de manera notable al desarrollo en México de la física de partículas y campos. Podrán concursar también físicos mexicanos radicados en o fuera de México que se hayan destacado en el ámbito internacional por sus contribuciones en esta área del conocimiento.

BASES

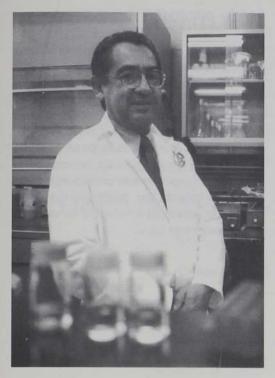
- 1. Los candidatos deberán ser propuestos por miembros de la DPC-SMF
- 2. Las propuestas deberán incluir la siguiente documentación:
 - *Carta de presentación
 - *Currículo del candidato
 - *Carta de anuencia del candidato
- 3. El jurado estará integrado por el Consejo Técnico Consultivo de la DPC-SMF. El fallo del jurado será inapelable y la Medalla no podrá otorgarse post mortem.
- 4. La Medalla 2002 será entregada en una ceremonia especial que se celebrará durante la X Escuela Mexicana de Partículas y Campos que tendrá lugar del 30 de octubre al 6 de noviembre de 2002 en Playa del Carmen, Quintana Roo.
- 5. La fecha límite para presentar candidatos es el 8 de junio del 2002.

Mayores informes

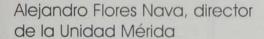
Myriam Mondragón IF-UNAM, Ciudad Universitaria Apdo. Postal 20-364 01000, México, D.F. Tel. (55) 5622 5014, Fax (55) 5622 5015 myriam@fisica.unam.mx Lorenzo Díaz Cruz IF-BUAP Apdo. Postal 5-48 72570, Puebla, Pue, Tel./Fax: (22) 45 76 45 Idiaz@ifuap.buap.mx

Onésimo Hernández Lerma, Premio Nacional de Ciencias y Artes 2001

El Premio Nacional de Ciencias y Artes 2001 en el área de las ciencias físico matemáticas y naturales fue otorgado a los doctores Onésimo Hernández Lerma, investigador titular del Departamento de Matemáticas del Cinvestav. Herminia Pasantes y Ordóñez, investigadora titular del Instituto de Fisiología Celular de la UNAM, y Julio Everardo Sotelo Morales, investigador del Instituto Nacional de Neurociruaía de la Secretaría de Salud. El Dr. Onésimo Hernández Lerma es el tercer investigador del Departamento de Matemáticas del Cinvestav que es distinguido con este premio: en el pasado lo recibieron los doctores José Adem (1967) y Samuel Gitler (1976). Los investigadores del Cinvestav que han recibido también este premio son: Dr. A. Rosenblueth (1966, Fisiología), Dr. C. Casas Campillo (1973, Biotecnología), Dr. G. Massieu (1976, Neurociencias), Dr. J. Cerbón (1978, Bioquímica), Dr. P. Rudomín (1979, Fisiología), Dr. J. Ruiz Herrera (1984, Genética), Dr. M. Rojkind (1985, Bioquímica), Dr. A. Martínez Palomo (1986, Patología), Dr. P. Joseph Nathan (1991, Química), Dr. H. Aréchiga (1992, Fisiología), Dr. M. Cereijido (1995, Fisiología), Dr. E. Juaristi (1988, Química) y Dr. J. Aceves Ruiz (2000, Fisiología).


Onésimo Hernández Lerma

El Dr. O. Hernández Lerma obtuvo su licenciatura en ciencias físico matemáticas en la ESFM-IPN (1971) y su grado de doctor en ciencias (matemáticas) en la Universidad Brown de los EUA (1978). Se incorporó a la planta académica del Departamento de Matemáticas en 1979, tuvo bajo su responsabilidad la jefatura del departamento en el periodo 1992-1997, actualmente tiene la máxima categoría académica del Cinvestav (3F) y es Investigador Nacional Nivel III. Su campo de investigación es el control estocástico, en particular el control con objetivos múltiples, la teoría de juegos estocásticos, la programación lineal infinita y los procesos de Markov. Sobre estos temas ha publicado 80 artículos originales de investigación, tres libros publicados por la editorial Springer-Verlag y 11 monografías. Está considerado como uno de los matemáticos mexicanos más citados (más de 600 citas realizadas por otros autores) en un campo donde el número promedio de citas a los trabajos de matemáticas aplicadas es de una cita por artículo según el Science Citation Index. Su labor en formación de recursos humanos también es excepcional para el medio científico nacional: ha supervisado las tesis de 10 estudiantes de doctorado (6 del Cinvestav, 2 de la UAM-I y 2 de la FC-UNAM), 22 de maestría y 3 de licenciatura.


Daniel Martínez Fong, jefe del Departamento de Fisiología, Biofísica y Neurociencias

El Dr. Daniel Martínez Fong fue nombrado jefe del Departamento de Fisiología, Biofísica y Neurociencias del Cinvestav por un periodo de cuatro años a partir del 1 de diciembre de 2001. El Dr. Martínez Fong es médico cirujano egresado de la UAZ y con doctorado en ciencias obtenido en 1988 en este mismo departamento. Su interés de investigación está asociado a las neurociencias: los modelos de terapia génica por envío dirigido de genes, las citocinas en el sistema nervioso central, los neuropéptidos y neurotransmisores en enfermedades neurodegenerativas y la neurotoxicidad. El Institute for Scientific Information de Filadelfia, EUA, distinguió al Dr. Martínez Fong por haber publicado dos artículos en las revistas Brain Research y Neuroscience Letters que son de los más citados en la década 1990-1999. En el aspecto de formación de recursos humanos, ha diriaido 7 tesis de doctorado, 8 de maestría y 2 de licenciatura.


110 Marzo-abril de 2002

Daniel Martinez Fona

Fue designado director de la Unidad Mérida del Cinvestav el Dr. Alejandro Flores Nava, investigador titular del Departamento de Recursos del Mar de esta misma unidad, por un periodo de cuatro años a partir del 16 de enero de 2002. El Dr. Flores Nava obtuvo su doctorado en acuacultura en la Universidad de Sterling, Escocia, en 1990 y tuvo bajo su responsabilidad la jefatura del Departamento de Recursos del Mar en el periodo 1991-1995. Su campo de investigación incluye la ecología productiva y la ingeniería acuícola en crustáceos y batracios de interés comercial.

Alejandro Flores Nava

Juan Eloy Ayón Beato, Premio Weizmann 2001

La Academia Mexicana de Ciencias (AMC) otorgó el Premio Weizmann 2001 en el área de las ciencias exactas al Dr. Juan Eloy Ayón Beato. Este premio es otorgado por la AMC en colaboración con la Asociación de Amigos del Instituto Weizmann a las mejores tesis doctorales presentadas en instituciones mexicanas por investigadores menores de 35 años. El título de la tesis ganadora es "Hoyos negros: interior y exterior" y estuvo dirigida por el Dr. Alberto García Díaz, investigador titular y jefe del Departamento de Física del Cinvestav. Esta tesis ya había sido distinguida por el Cinvestav con el Premio A. Rosenblueth 2000. Con esta distinción, ya son

Alberto García y Juan E. Ayón Beato

siete los egresados del Departamento de Física que han obtenido el Premio Weizmann desde su creación en 1986: José Luis Arauz Lara (1986), Gabino Torres Vega (1987), Alejandro Vizcarra (1990), Roberto Martínez (1991), Héctor Hugo García Compeán (1996) y José Herman Muñoz (1998).

Fe de erratas

Dos fotos de la sección de noticias del número anterior (enero-febrero 2002) de Avance y Perspectiva aparecieron con los pies intercambiados: la primera foto de la página 49 corresponde a la Dra. Fabiola Constanza Nava Alonso y el Dr. Francisco R. Carrillo Pedrosa, ganadores del Premio A. Rosenblueth 2000 en el área de la tecnología y las ciencias de la ingeniería; la segunda foto corresponde al Dr. José Víctor Segovia Vila, director de la tesis de doctorado ganadora en el área de ciencias biológicas y de la salud.

Notas breves

El Dr. Octavio Paredes López, investigador titular de la Unidad farpuato del Cinvestav, fue elegido vicepresidente de la Academia Mexicana de Ciencias para el periodo 2002-2003. Posteriormente asumirá la presidencia de esta academia durante el periodo 2004-2005.

La Embajada Alemana en México donó un equipo de tecnología virtual *Phontom 3-D Interac*tive a la Sección de Mecatrónica del Departamento de Ingeniería Eléctrica del Cinvestav como apoyo de la Fundación Von Humbold al Dr. Vicente Parra, investigador titular de este departamento y ex becario de esta fundación.

Lamentamos los fallecimientos de dos colegas del Cinvestav: M. en C. Joaquín Remolina López (diciembre de 2001), de la Sección de Bioelectrónica, y el Dr. Carlos Méndez Domínguez (enero 2002), del Departamento de Fisiología, Biofísica y Neurociencias

La física en tiempos de estío

Carlos Chimal

En nuestro recorrido por la galería de voces que forman parte de la ciencia viva contemporánea toca el turno a Álvaro de Rújula, una figura iberoamericana sobresaliente de la física de altas energías y quien ha desarrollado prácticamente su carrera en el Centro Europeo de Investigaciones Nucleares (CERN), localizado en las afueras de la ciudad de Ginebra, Suiza. Como físico teórico, de Rújula ha incursionado en diversos tópicos clave de esta disciplina, tanto en asuntos que tienen que ver con la estructura interna del átomo como en cuestiones de cosmología y astrofísica.

Hoy en día esta ciencia, y en particular el CERN, viven un momento crucial. El anillo que durante poco más de una década albergó al Gran Colisionador de Electrones y Positrones (LEP) fue cerrado para dar paso a un nuevo acelerador, esta vez de hadrones (LHC). ¿Cómo se vive el cambio en CERN?, ¿qué ciencia puede hacerse mientras está lista la nueva máquina y qué se espera de ella?, son algunas de las cuestiones sobre las que conversamos con el profesor de Rújula.

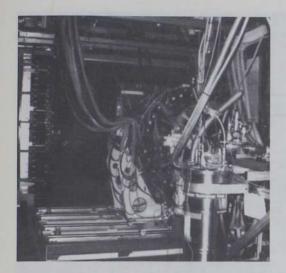
Antimateria

Carlos Chimal (CC): Aunque sé que no es el tema principal de sus estudios, ni del CERN mismo, de todos modos me gustaría empezar hablando de algo que se produjo tanto en el recientemente clausurado LEP como en otros aceleradores. Me refiero a la antimateria.

Carlos Chimal, escritor interesado en la comprensión pública de la ciencia, es colaborador de Avance y Perspectiva.

Alvaro de Rújula (AR): La antimateria es una de estas cosas un poco difíciles de explicar. Pero, veamos. En la naturaleza hay partículas que tienen carga eléctrica, por ejemplo los electrones, y entendemos desde hace mucho tiempo, desde hace setenta años, que para toda partícula que tiene una carga existe otra igual, con propiedades idénticas menos la carga, que es del signo opuesto. El Universo prácticamente está hecho sólo de materia: nosotros estamos hechos de materia, el aire, el Sol, los planetas, las estrellas todos están formados por materia, No obstante, se sabe que hay un poquitín de antimateria en el Universo, la cual se crea en colisiones entre partículas de muy alta energía. También hay antimateria que creamos en el laboratorio con el objeto de estudiarla. La antimateria no juega un papel importante en la vida de la humanidad, excepto que es parte de nuestra comprensión acerca de cómo funciona el Universo y cuáles son las leyes fundamentales que rigen el comportamiento de la materia, de la antimateria, de la luz, de todo lo que existe. Tenemos que estudiar la antimateria, es un tópico a considerar cuando estudiamos la realidad en su nivel más básico.

CC: ¿Se conoce alguna diferencia entre la antimateria que puede rastrearse naturalmente en el Universo y la que se produce en el laboratorio?


AR: De hecho, son iguales. Tanto la que producimos en el laboratorio como la que se genera en la naturaleza de modo espontáneo son resultado de colisiones entre partículas de materia, y parte de la energía de estas colisiones se puede convertir en antimateria por la famosa fórmula de Albert Einstein, según la cual la masa es equivalente a la energía. Uno puede emplear una cierta cantidad de energía para producir partículas nuevas y algunas de las partículas nuevas que uno produce cambian de signo y se convierten en antimateria.

CC: Ya en otra ocasión hemos habaldo de esto¹, pero en favor de nuestros lectores en esta ocasión, ¿podríamos hacer un breve repaso?, ¿cómo se descubrió?

AR: La antimateria fue predicha por Paul Dirac, creo que en el año de 1932, quien se dio cuenta de que al relacionar dos aspectos que, suponemos, describen la naturaleza de las cosas a un nivel muy fundamental (la mecánica cuántica y la teoría de la relatividad de Einstein), entre otras cosas predicen la existencia de la antimateria. El primero de los ejemplares vaticinado por Dirac fue la antipartícula del electrón, el positrón, y se descubrió muy pocos años después, también en la década de 1930, por Carl Anderson. De manera que hace ya setenta años que sabemos que la antimateria existe y que la empleamos para estudiar las propiedades de la naturaleza.

CC: ¿Qué leyes de la naturaleza se explican o se estudian gracias al descubrimiento de la antimateria?

AR: Por ejemplo, el hecho de que por cada partícula de materia debe existir una partícula de antimateria y que ambas son distintas. Esto es ya la primera cosa que comprobamos experimentalmente. La antimateria nos sirve también para estudiar qué leyes de la naturaleza son ligeramente distintas entre la materia y la antimateria. Las diferencias entre la materia y la antimateria no son

muy grandes, son sólo un poquitito distintas, una fracción de sus propiedades mínima es un poco distinta y creemos que esa es la razón por la cual el Universo está hecho de materia y no de antimateria. Al principio del Universo las cantidades de materia y antimateria eran muy superiores a la cantidad de materia que hoy vemos. La cantidad de materia y antimateria era como mil millones de veces superior a la cantidad de materia que ha quedado. Además, creemos que el Universo nació de una manera completamente simétrica, con tanta materia como antimateria, y que es esta pequeña diferencia entre las propiedades de la materia y la antimateria hizo que la materia ganase, por así decirlo, y hoy en día el Universo tiene un exceso de materia y casi no tiene antimateria.

CC: ¿Qué pasó con esa antimateria?

AR: La mayor parte de las partículas de materia y antimateria se aniquilaron unas con otras y se volvieron partículas de luz. La luz no es ni materia ni antimateria, es una partícula que se llama fotón, no tiene carga y es a la vez materia y antimateria, de manera que el gran exceso de partículas que una vez creemos que hubo en forma de materia y antimateria acabó siendo luz. De hecho, en el Universo queda el resto de esa luz. El Universo tiene mil millones de veces más partículas de luz que partículas de materia tal como la conocemos y de las cuales estamos hechos.

Radiación de fondo

CC: Es decir, que el remanente se volvió luz y esa luz, al interactuar con la materia...

AR: Esa luz se ha ido enfriando. El Universo está en expansión y a medida que la luz se expande su energía es más pequeña. Cada partícula adquiere una energía inferior; como si su longitud de onda, que es lo mismo que la energía, se fuese estirando con el aumento del tamaño del Universo. La luz que queda de aquella época, en la cual había tanta materia como antimateria, es ahora luz de muy baja energía. Atención, que no es el tipo de luz que vemos, sino que es luz que se mide por otros métodos, por ejemplo, con detectores de radio y cosas por el estilo.

CC: ¿Es la radiación de fondo?

AR: Es la radiación de fondo.

CC: ¿Se conocen todas las antipartículas de todas las partículas?

AR: Sí. De todas las partículas que sabemos que deben tener una antipartícula se conoce la partícula y la antipartícula, de manera que eso está muy claro.

CC: ¿De qué partículas no habría antimateria?

AR: No hay antimateria sólo de las partículas que no tienen carga y que son iguales a su partícula de antimateria. Por ejemplo, los fotones. La partícula y la antipartícula son la misma cosa, de manera que no se distinguen. Para ser la misma cosa su carga eléctrica tiene que ser nula y la luz es un ejemplo de partícula con carga eléctrica nula.

CC: Es inquietante saber que algo puede ser al mismo tiempo materia y antimateria.

AR: Sí, es no tener un pie en un lado ni en el otro, sino estar exactamente en medio. Tener un pie aquí o allá quiere decir tener carga positiva o carga negativa, las que tienen carga nula pueden ser iguales a su propia antipartícula.

Antihidrógeno

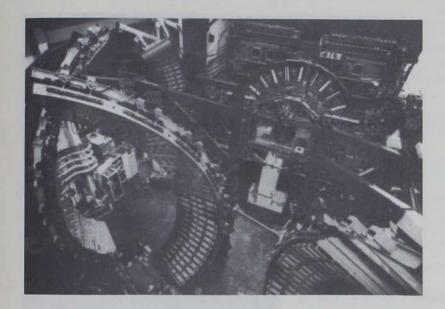
CC: ¿Cuál es el futuro de la investigación en este tema?

AR: Hoy en día, aquí en Ginebra seguimos haciendo investigaciones de antimateria tratando de escudriñar en su estructura atómica. Estamos fabricando átomos de antimateria, por ejemplo, átomos de antihidrógeno, hechos de un antiprotón y un antieléctron. Con ellos es más fácil estudiar las propiedades de la antimateria a una mayor precisión: en qué se distinguen y en qué no. Ahora hacemos estos experimentos en los que poco a poco construimos objetos más grandes que simples partículas de antimateria. Lo más que se ha construido por ahora son átomos de antihidrógeno y algunos antinúcleos atómicos.

CC: ¿Con qué finalidad?


AR: La finalidad es, siempre, simplemente entender cómo funcionan las cosas. Pero el pasado nos demuestra que todo progreso en el entendimiento de las cosas significa, a veces a corto plazo y a veces a largo plazo, un desarrollo tecnológico. Y para quienes creemos que la tecnología es útil, sabemos que toda física y toda investigación fundamental, la cual en un principio está solamente guiada por la curiosidad, acaba siendo algo útil para muchas cosas.

CC: ¿Cree que alguna de estas investigaciones alcance algo similar?


AR: Cuando he citado el pasado es porque sólo del pasado puedo estar seguro; si estuviera seguro del futuro lo citaría. Pero para cosas no muy fundamentales, por ejemplo para cuestiones de calculadoras electrónicas y cosas por el estilo, el progreso científico siempre acarrea de manera segura un cierto progreso tecnológico.

No hablamos de grandes saltos sino de progresos técnicos inmediatos. Eso sí, la ciencia fundamental puede garantizar que continuamente las cosas que vamos desarrollando servirán para estimular el progreso de manera relativamente rápida.

CC: ¿Podríamos especular un poco sobre la antimateria? ¿Qué posibles aplicaciones tendría?

AR: Si fuésemos capaces de mantener un depósito de antimateria de manera estable, sin que se desintegrase con la materia, si pudiésemos aislarlo bien y tenerlo en el bolsillo, por así decirlo, éste sería el depósito más eficaz de energía jamás visto. Si pudiéramos emplear gasolina antimaterial, la cantidad de combustible sería una cosa minúscula, de manera que como método de acumular gran cantidad de energía sería francamente útil. Lo que pasa es que tecnológicamente eso está demasiado lejos

como para que yo pueda prometer que dentro de unos años, en lugar de echarle gasolina a los automóviles le vamos echar antimateria, eso está muy lejos.

CC: ¿Una mínima cantidad por razones químicas?

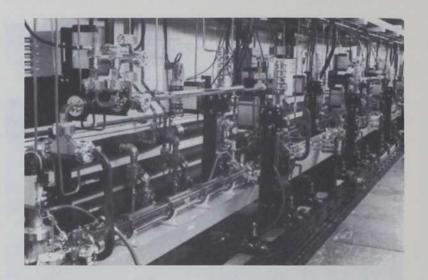
AR: Sí. Al quemar gasolina se produce una cierta cantidad de energía por molécula de gasolina que uno puede medir en electron-voltios. Por partícula de materia que uno quema se producirían mil millones de veces más energía, de manera que si uno pudiera tener un depósito de antimateria en lugar de un depósito material sería mil millones de veces más eficaz. El tamaño del depósito sería mil millones de veces más pequeño o la cantidad que uno podría llevar de "gasolina" sería mil millones de veces más grande en el mismo volumen. Pero, en fin, eso es hoy completamente terreno de la ciencia ficción. Pero como me lo preguntas, en principio se podrían hacer cosas así.

Explosiones estelares

CC: ¿Cuál es su principal tema de investigación?

AR: Yo trabajo un poco en todo; hago cosmología, que es el estudio del Universo, y hago también física de partículas elementales. Pero no hay un tema al que me dedique continuamente. Soy físico teórico, es decir, de esos que trabajan con papel y lápiz y no construyendo detectores y aparatos, de manera que puedo cambiar de idea de un día a otro y dedicarme a otra cosa. Y, de hecho, lo hago con cierta frecuencia. He hecho muchas cosas distintas y sigo haciéndolas. Ahora estoy trabajando sobre todo en astrofísica, en los chorros de rayos gamma que son misteriosos haces de luz provenientes de todo el Universo y cuyo origen no hemos acabado de comprender aún.

CC: ¿Son haces de muchísima energía?


AR: No son de muy alta energía y sí de muy alta intensidad. En uno solo de estos chorros de luz hay más energía de la que producirá el Sol en toda su vida, una cantidad de energía astronómica.

CC: ¿Y no se sabe todavía cuál es su origen?

AR: Yo creo saberlo pero todavía no he convencido a la comunidad de ello.

CC: ¿Cuál es su hipótesis?

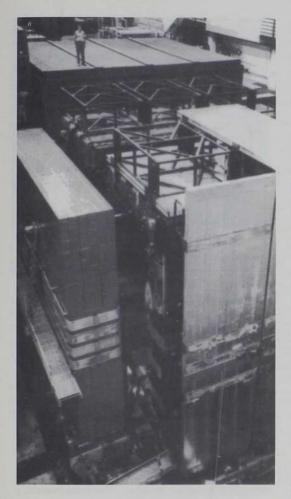
AR: Mi hipótesis es que tiene que ver con explosiones estelares. Cuando las estrellas son grandes y viejas a veces

mueren de manera explosiva, y yo creo entender un mecanismo por el cual esas muertes explosivas producirían un chorro de luz como el de una linterna. Es un haz muy fino que, cuando viene en nuestra dirección, se convierte en uno de estos chorros de rayos gamma que estamos intentando entender.

CC: ¿Cualquier estrella que muera así produciría esta radiación?

AR: No todas. Creo que sólo las llamadas supernovas de tipo I producirían estos haces de luz de muy alta intensidad.

El último de su clase


CC: En cuanto al futuro del LHC y el mismo CERN, ¿cómo lo ve usted? ¿Tiene sentido construir una nueva generación de aceleradores, quizá más grandes?

AR: El LHC (Large Hadron Collider) es el nombre del acelerador que estamos construyendo ahora y que tardará todavía algo así como cinco o seis años en terminarse. Es cierto, a medida que ha pasado el tiempo hemos ido construyendo aceleradores más y más grandes, hasta que llega el momento en que cierta tecnología ya no sirve para montar un acelerador mayor, porque saldría demasiado caro. Probablemente el LHC es el último o el

penúltimo que diseñamos y levantamos con la tecnología que hoy comprendemos. Y si no inventamos una manera mejor de acelerar partículas, entonces sería el último de los aceleradores de su clase. Pero en el pasado siempre ha habido gente astuta que ha inventado maneras mejores de hacer cualquier cosa, en partícular acelerar partículas. Así que yo no creo, como creen otros aún contagiados por ideas milenaristas, que con el milenio se acaba la investigación científica. En lo sucesivo inventaremos mejores maneras de acelerar partículas y seguiremos haciendo estudios a mayor y mayor energía.

CC: ¿Hay un "adentro" del quark?

AR: Las partículas que llamamos elementales se llaman así porque no sabemos si tienen una subestructura, es decir, si están hechas o no de partículas más pequeñas. Los quarks que acabas de mencionar son los componentes de los protones y los neutrones del núcleo atómico, y son las partículas que hoy creemos elementales, es decir, que no tienen partes. Creemos también que el electrón y el fotón tampoco tienen partes. Pero lo sabemos sólo hasta la escala en que hemos podido estudiar. Ahora bien, es posible que las partículas que hoy creemos elementales algún día dejen de serlo. Por ejemplo, los átomos se llaman así porque en el pasado remoto se pensaba que no tenían partes. Pero hace ya más de cien años que sabemos que los átomos tienen partes; los átomos eran partículas elementales y ya no lo son; los quarks son partículas elementales hoy en día, quizás mañana ya no lo sean.

Bosón de Higgs

CC: ¿Por qué es tan importante encontrar el bosón de Higgs en el LHC?

AR: Creemos que tiene que ver con el mecanismo que da masa a todas las otras partículas. No entendemos por qué las partículas tienen las masas que tienen, pero creemos que se debe a una nueva partícula, que se llama bosón de Higgs y de la que se ha hablado mucho, y es la que, en cierto sentido, confiere masa a las otras. Esta incógnita representa un bloque esencial en nuestra comprensión actual de cómo funcionan las cosas, y una

de las tareas principales del LHC es determinar si esa partícula existe o no. Pero también existe la posibilidad de descubrir muchas otras cosas. Hay quienes suponen la existencia de otras partículas llamadas supersimétricas que podrían ser descubiertas cuando el LHC se ponga en operación.

 \mathbf{CC} : \dot{c} Qué energía alcanzará el LHC en su máxima capacidad?

AR: Una energía de lo que se llama 8 TeV por haz; son dos haces los que colisionan. Un TeV significa un millón de millones de electron-voltios, y un electrón-voltio es la energía más o menos de una partícula de luz emitida por una bombilla eléctrica o foco, de manera que eso tiene como mil millones de veces más energía por partícula que las partículas que vemos con nuestro ojos.

CC: Eso sería alrededor del 2005...

AR: Esa era la fecha oficial hasta hace poco; ahora puede ser 2007.

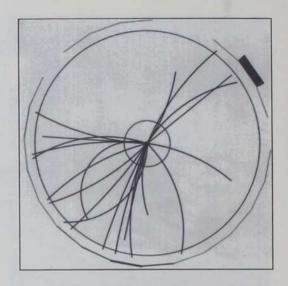
CC: Los eventos en el LEP, ¿fueron reales? Es decir, ¿se alcanzó la energía suficiente para ver el Higgs?

AR: En el LEP se encontraron indicios muy fuertes de la existencia del bosón de Higgs. Estaban a punto de descubrirlo si los datos que tenían no eran completamente falsos. Desgraciadamente, por razones que yo personalmente no considero científicas, las autoridades nuestras decidieron cerrar ese acelerador cuando quizás, no lo sé, estaban por descubrir el bosón de Higgs. Y el guitarles a los investigadores el entusiasmo de encontrar algo justo cuando lo estaban encontrando es como quitarle un caramelo a un niño, es algo francamente perverso. Y esto es lo que ha sucedido. Es una lástima, no hemos podido seguir haciendo uso de ese acelerador. Yo no sé si la partícula de Higgs hubiera sido descubierta o no. Pero lo que sí sé es que hubiera querido saber si estaba ahí o no. Y para eso habría hecho falta continuar con los experimentos, seguir unos cuantos meses más. Pero se decidió cerrarlo y poner todo el esfuerzo en esta otra máquina del futuro que se llama LHC.

CC: ¿Qué otros experimento importantes correrán en el LHC y hacia adónde se dirigirán?

AR: Los experimentos más importantes solamente buscan el Higgs o la supersimetría, aunque espero que encuentren algo completamente distinto. Hay muy pocos experimentos en estos aceleradores porque no hay mucho espacio, de manera que los esfuerzos están bastante concentrados.

CC: Encontrar algo nuevo, ¿cómo qué?


AR: Hay ideas un poco locas pero que pueden resultar ciertas. Por ejemplo, se pretende que haya más de tres dimensiones en el espacio. Nosotros vemos a la derecha y a la izquierda; arriba y abajo; adelante y atrás, tres dimensiones. Pero según esta idea existen otras dimensiones que no se extienden a gran distancia, como las tres que acabo de mencionar, sino que son pequeñitas dimensiones cerradas en cada punto. La superficie de una esfera tiene dos dimensiones pero si hago la esfera muy pequeña, muy pequeña, puedo poner una esferita en cada punto del espacio. La idea, pues, es que cada punto sería una esferita con otras dimensiones extras. Esto también es una cosa que es posible investigar en experimentos de muy alta energía, porque es vendo a muy alta energía como exploramos distancias cada vez más pequeñas, de manera que si el espacio tuviese otras dimensiones muy pequeñitas es una cosa que puede uno estudiar con el LHC, esa es una de las posibilidades más aventuradas de cosas que quizás se puedan descubrir.

CC: Hay esta sensación con respecto de la física de altas energías de que, más que descubrir, produce cosas: induce. De pronto dicen: "Bueno, vamos a descubrir nuevas dimensiones", iy las descubren! ¿No es así?

AR: Yo creo que es así la mitad de la veces. La mitad de la veces los físicos teóricos van por delante de los experimentos e inventan cosas que luego resulta que existen. Por ejemplo, la antimateria. Pero en la otra mitad las cosas existen, son cosas que a nadie se les había ocurrido y por lo tanto es mitad y mitad. Yo creo que no puede decirse que siempre sabemos qué es lo que va a pasar ni mucho menos, ni que lo que fabricamos es algo que se nos ha ocurrido antes.

CC: Los laboratorios se convierten en fábricas de "belleza", por ejemplo.

AR: Sí, es porque ya sabemos que existen estas partículas que decimos que tienen "belleza" y, por lo tanto, se puede hacer una fábrica de belleza. Pero la belleza fue

descubierta por Leon Lederman primero no muy claramente, más bien por casualidad, sin saber que esa clase de partículas tenía que estar ahí.

CC: El estudio de la supersimetría surgió del estudio detallado de la estructura del espaciotiempo, ¿qué carateriza a las partículas supersimétricas?

AR: Las partículas elementales tiene un atributo que se llama espín y que tiene que ver con la apariencia que adquieren cuando uno las mira y gira la cabeza. Por ejemplo, para mirar un electrón que apunta hacia arriba tiene uno que girar la cabeza no 360 sino 720 grados antes de que vuelva a aparecer en la misma posición, y eso se llama tener espín 1/2. El fotón, que es una partícula con espín 1, es más fácil de entender, ya que si uno gira la cabeza sólo 360 grados el fotón vuelve a aparecerse igual que antes. La idea de la supersimetría es que por cada partícula de un espín dado, por ejemplo del electrón, que tiene espín 1/2, existe otra partícula que se llama superelectrón y que posee un espín diferente por un 1/2. Así, por ejemplo, el superelectrón tendría espín cero. El fotón, cuyo espín es uno, tendría un compañero supersimétrico, el fotino, que tendría espín 1/2.

La ventaja de inventar una teoría supersimétrica y estas partículas primas de las que conocemos, pero que difieren en espín por un 1/2, es que nos permite entender un poco mejor algunos aspectos. De hecho, algunos

colegas que trabajan en supersimetrías son muy entusiastas y creen que han explicado todo. Yo creo que no han ido tan lejos. Como quiera que sea, la idea es entender por qué en la naturaleza hay escalas de energías que son muy distintas unas de otras. A uno le gustaría más que todo fuese explicado por una sola escala, que fuese la misma para todos. Pero vemos en la naturaleza muchas escalas distintas de energía y el tratar de unirlas es lo que lleva a la idea de la supersimetría.

CC: ¿Es una manera de "parchar" el Modelo Estándar o simplemente de completarlo?

AR: Es una manera de intentar entender por qué en el Modelo Estándar hay escalas muy distintas de energía.

CC: Pero el modelo es autosuficiente, es un paradigma real.

AR: Lo es. Sin embargo, en ciencia las cosas nunca son verdad totalmente sino que están más o menos cerca de la verdad. El Modelo Estándar está a una distancia de la verdad tal que explica todas las cosas que conocemos de manera indudable. Pero como es relativamente complicado pensamos que debe haber algo más sencillo, subyacente a él. Y ese algo más sencillo, si existe, estará todavía más cerca de la verdad. Así que el Modelo Estándar está tan cerca de la verdad como puede estarlo.

CC: ¿Qué estaría más cerca, una teoría unificada?

AR: Por ejemplo, la supersimetría.

CC: ¿Y las supercuerdas?

AR: Sí, también las supercuerdas, que en principio podrían explicarlo todo y que en la práctica no han explicado nada. Aun así representan por ahora la única esperanza de entender la gravedad, la cual es una de las cuatro fuerzas fundamentales, como algo no muy distinto de las demás fuerzas. Es la única teoría que tiene la esperanza de unificar la gravedad con las otras interacciones.

CC: ¿Cómo caracterizaría su naturaleza?

AR: Hasta ahora hemos hablado siempre en términos de partículas, esto es, de objetos puntuales, pues carecen de una extensión. Durante casi todo el siglo pasado la física fundamental se basó en el concepto de partícula elemental. Las partículas elementales, como ya dijimos, son aquellas que no tienen partes y cuyo comportamiento es similar al del un punto matemático, no tienen una extensión. Las supercuerdas es una idea distinta, según la cual existirían objetos que tienen una dimensión lineal, como una cuerda. Y las cuerdas pueden vibrar, incluso de distintas maneras. Así que la idea es que una sola supercuerda en sus distintos modos de vibración sería el cúmulo de las distintas partículas, de manera que las distintas partículas no son distintas sino que son el mismo violín tocado con diferentes notas, por así decirlo.

Rayos cósmicos

CC: En cuanto a los rayos cósmicos cómo ve este viejo y al mismo tiempo novedoso campo?

AR: Sí, los rayos cósmicos se descubrieron alrededor de 1911. Son partículas de muy alta energía que llueven sobre la atmósfera de la Tierra y cuyo origen todavía no hemos entendido del todo. Es, en efecto, un campo de investigación que, a pesar de su edad, sigue siendo muy jovencito. Está lleno de ideas y de posibilidades.

CC: Los experimentos ahora son gigantescos, localizados en varias hectáreas.

AR: Sí, los arreglos experimentales son muy grandes porque así se estudian las partículas de muy alta energía. A mayor energía, se detectan menos y menos partículas. Por ejemplo, un rayo cósmico nos atraviesa cada segundo; partículas llamadas muones pasan a través de nuestra cabeza y de nuestro cuerpo más o menos cada segundo pero son de relativamente baja energía. Si uno quiere estudiar otras partículas que también existen en los rayos cósmicos y que son de muchísima mayor energía, entonces tiene que aprender cómo al colisionar con nitrógeno u oxígeno en el aire alto de la atmósfera se producen chorros de partículas. Y cuanto mayor es la energía de la partícula original, mayor será el chorro de partículas que producen. de manera que estos chorros de diversas partículas llegan a la superficie de la Tierra extendidas sobre muchos kilómetros cuadrados. Por eso los detectores necesitan abarcar una extensión de terreno enorme. No es que el terreno esté completamente cubierto de detectores, que

además son pequeños como una mesa, sino que se distribuyen cada cien metros en muchos kilómetros a la redonda.

CC: ¿Esos detectores son de agua?

AR: Sí, los más sencillos simplemente están hechos de agua, un barril de agua en la oscuridad, de manera que cuando pasa una partícula cargada produce un poquito de luz, eso es lo que se observa. Se hacen detectores de agua por la sencilla razón de que es un material muy barato y relativamente abundante.

Ciencia y sociedad

CC: En este momento de retraimiento en la economía vuelve a reprocharse a esta ciencia su elevado costo experimental.

AR: Si uno compara lo que gasta una persona que trabaja en estos experimentos por año no es mayor de lo que gasta alguien que hace física de estado sólido o biología molecular. El presupuesto por físico es más o menos el mismo. De hecho, en física de partículas es inferior que en otros terrenos, pues tenemos la capacidad de colaborar en grandes grupos. Pero por barba (o por cabellera) de persona no se gasta más dinero que en otras ramas de la ciencia.

CC: Usted es español. ¿Cómo ve a la ciencia española hoy?

AR: La ciencia española siempre anda fluctuando. De cuando en cuando nuestros gobiemos tienen un ataque de entusiasmo por la ciencia, como les pasó a los socialistas hace unos veinte años. Durante sus primeros gobiernos les dio por creer que la ciencia era muy importante y le dieron un impulso muy grande. Pero eso no duró, y en los últimos años de los gobiernos de Felipe González la cosa empeoró. El gobierno actual del Partido Popular es mucho menos proclive a apoyar la ciencia; no pagan a los investigadores, no distribuyen las becas a tiempo, pierden a todos los jóvenes que están ahí, esperando a ver si obtienen un puesto para trabajar durante un año. Es un verdadero desastre y tiene la culpa específicamente el gobierno.

CC: Una última pregunta. ¿Quisiera ser usted el primero en descubrir algo?

AR: No necesariamente. Muchos antes que Colón llegaron a América, él fue el último que si guardó un registro y es el que quedó en la memoria de todos.

Nota

1 Véase, G. Herrera y C. Chimal, Avance y Perspectiva 20, 127 (2001)

Ciencias interdependientes: física y medicina

Michael S. Witherell

Muchas técnicas terapéuticas y de diagnóstico que han revolucionado la medicina son también símbolos de la interdependencia que existe entre la física y las ciencias biomédicas. Las imágenes obtenidas por resonancia magnética y la terapia de neutrones son sólo dos de los ejemplos más prominentes de la exitosa colaboración entre los innovadores investigadores médicos, los físicos y los ingenieros. Los colisionadores de electrones que fueron desarrollados inicialmente para la física de altas energías se convirtieron en fuentes de luz sincrotón (synchrotron light sources); estas herramientas son ahora tan importantes para la investigación médica que los Institutos Nacionales de Salud de los EUA (NIH por sus siglas en inglés) están destinando millones de dólares de sus propios fondos para la construcción de más líneas de emisión a partir de aceleradores sincrotón.

Harold Varmus, presidente del Memorial Sloan-Kettering Cancer de Nueva York, ex director de los NIH y recipiendario del Premio Nobel 1989 de Medicina, escribió un artículo editorial para el Washington Post hace aproximadamente un año donde resalta esta interdependencia de las ciencias físicas y médicas. En él hizo notar que el apoyo para las ciencias físicas en los EUA ha ido decayendo durante los últimos diez años, al mismo tiempo que el apoyo financiero para la investigación médica casi se ha duplicado en términos reales (figura 1). El Dr. Warmus escribió:

"Observé la interdependencia de las ciencias siendo niño, cuando mi padre —un aficionado con una

El Dr. Michael S. Witherell es director del Laboratorio Nacional de Fermi (Fermilab) de los EUA. La versión en inglés de este articulo apareció en Fermilab News Vol. 24, No. 15 (2001). Traducción de Gloria Novoa de Vitagliano.

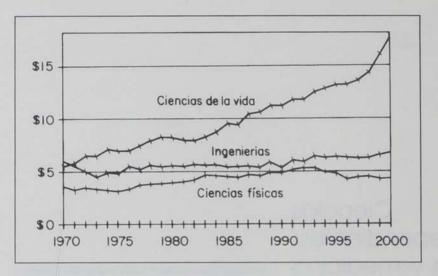


Figura 1, Evolución del gasto federal de los EUA por disciplina en el periodo 1970-2000 en miles de millones de dólares. Cortesia AAAS (EUA).


oficina conectada a nuestra casa- me enseño un aparato de rayos X. Me maravillé de la tecnología que podía revelar los huesos de los pacientes o las tripas de nuestras mascotas. Y aprendí que se trataba de algo que los doctores, no importa cuán expertos fueran con el estetoscopio o la sutura, no podían desarrollar por sí mismos. Por supuesto los rayos X son ahora una rutina. La ciencia médica puede visualizar el trabajo interior del cuerpo con una alta resolución con técnicas que pueden parecer deslumbrantemente sofisticadas: ultrasonido, tomografía por emisión de positrones y tomografía asistida por computadora. Estas técnicas son los caballitos de batalla del diagnóstico médico. Y ni una sola de ellas fue desarrollada sin la contribución de científicos tales como matemáticos, físicos y químicos apoyados por agencias actualmente en riesgo.

"Las medicinas efectivas son sujeto del mayor interés en la investigación médica y el desarrollo de drogas depende fuertemente de las contribuciones de una gran variedad de ciencias. El método tradicional de explorar al azar en busca de sustancias químicas prometedoras ha sido suplementado, y aun desplazado, por métodos más racionales basados en las estructuras moleculares, con imágenes obtenidas por computadora a partir de la teoría

química. La síntesis de compuestos prometedores es guiada por nuevos métodos químicos que pueden generar ya sea preparaciones puras de una molécula única o colecciones de literalmente millones de variantes sutiles. Para poder explotar estas nuevas posibilidades necesitamos fortalecer muchas disciplinas, no sólo la farmacología.

"Los avances médicos pueden parecer mágicos. Podemos correr el telón y estar sentados junto a un físico de altas energías, un químico computacional o un ingeniero. Las imágenes por resonancia magnética (IRM) son un excelente ejemplo. Tal vez el más grande avance en diagnóstico del último siglo, IRM es el producto de la física atómica, nuclear y de altas energías, química cuántica, ciencias computacionales, criogénia, física del estado sólido y medicina aplicada. En otras palabras, las diferentes ciencias juntas constituyen la vanguardia de la investigación médica. Y ya es tiempo que el Congreso de los EUA las trate como tales. Los senadores Christopher Bond y Barbara Mikulski han propuesto que se duplique el presupuesto de la National Science Foundation en cinco años. Este admirable esfuerzo debe ser vigorosamente apoyado y extendido para incluir la oficina de ciencias básicas del Departamento de Energía que proporciona los

Marzo-abril de 2002

fondos para la mitad de toda la investigación en las ciencias físicas y mantiene los laboratorios nacionales centrales en biomedicina.

"Los científicos pueden librar una guerra efectiva contra la enfermedad sólo si nosotros —como una nación y como una comunidad científica— apoyamos el desarrollo de muchas disciplinas, no solamente biología y medicina. Los aliados deben incluir matemáticos, físicos, ingenieros y científicos en computación y de la conducta. Yo apoyé esta situación repetidamente durante mi gestión como director de los NIH, y estos institutos hicieron grandes esfuerzos para impulsar el apoyo a estas áreas. Pero a largo plazo es esencial proporcionar subsidios adecuados a las agencias que tradicionalmente subvencionan tal trabajo y entrenan a quienes lo practican. Más aún, esto va a alentar la cola-

boración entre las agencias que promueven la ciencia interdisciplinaria. Sólo de esta manera se equilibrará la investigación médica en forma óptima para que pueda continuar su deslumbrante progreso."

Yo no puedo superar tan elocuente declaración. Simplemente agrego que en la mayoría de estos desarrollos médicos, la nueva tecnología fue el resultado de una investigación que no se hizo con miras al desarrollo de la tecnología médica. Los científicos no imaginaron el uso tan benéfico de la investigación que estaban llevando a cabo. Los físicos que primero construyeron un láser no pudieron haber imaginado los muchos modos en que esos rayos son usados en medicina hoy en día. La ciencia no es una colección de varias disciplinas que avanzan independientemente. Es más bien una red interconectada. Si ignoramos los profundos enlaces que existen entre los muchos campos individuales de las ciencias, estamos también ignorando la importancia del todo.

Herramientas para diagnóstico

Los avances en tecnología para diagnóstico médico han creado extraordinarias y nuevas posibilidades para tener una imagen precisa del cuerpo humano. Muchas de las herramientas más poderosas para el diagnóstico médico incorporan tecnología que los físicos originalmente desarrollaron para explorar la naturaleza fundamental de la materia.

La resonancia magnética (RM) hace uso de tecnología que empezó como una herramienta para los físicos con el fin de acelerar protones con la energía más alta del mundo. La IRM es una técnica usada para producir imágenes de alta calidad del interior del cuerpo humano. Está basada en los principios de resonancia magnética nuclear, una técnica usada por científicos para obtener información microscópica química y física acerca de las moléculas (figura 2).

En el corazón de la tecnología de IRM se encuentran poderosos magnetos hechos de alambre y cable superconductores que fueron desarrollados en los años 70 para construir el acelerador de partículas Tevatron del Fermilab. Para construir el Tevatron, Fermilab reunió expertos en superconductividad, física, ingeniería, ciencia de materiales e instrumentación. Su colaboración hizo que se pudiera disponer de la tecnología de magnetos superconductores para desempeñar un papel crucial en la nueva posibilidad de diagnóstico creada por la IRM.

Una nueva generación de magnetos superconductores dará a los físicos aceleradores más potentes para desentrañar los más profundos secretos del universo. Y una nueva generación de magnetos de alta intensidad para IRM ayudará a desentrañar los más profundos secretos del cuerpo humano.

Herramientas para curar

Algunos descubrimientos físicos han ayudado a lograr dramáticos avances en el tratamiento de cáncer por más de un siglo. En el período comprendido entre los años de 1950 a 1954, según el National Cancer Institute de los EUA, el promedio de supervivencia de cinco años para todos los cánceres era de 35 %; para 2000 fue de 59 %. Con una detección temprana y tratamiento adecuado, la tasa de cinco años es ahora de 80 %.

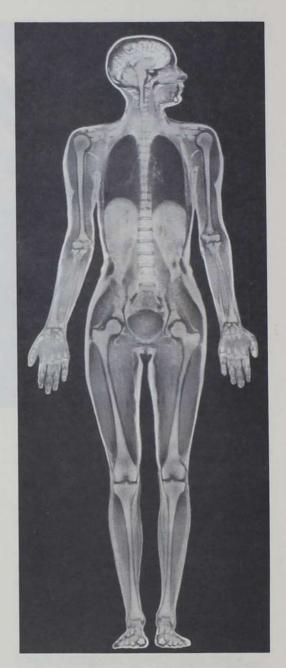


Figura 2, Imagen generada por resonancia magnética (IRM) del cuerpo completo de una mujer en sección coronal (frontal). La cabeza esta mostrada en sección lateral (sagital). Cortesia Fermilab News.

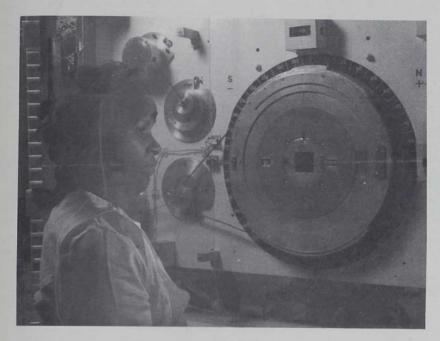


Figura 3. Una paciente tratada con radiaciones generadas en la Instalación de Terapia de Neutrones del Fermilab. Cortesia de Fermilab News,

Cuando Emest Lawrence y su hermano médico John trataron el cáncer de su madre con neutrones en 1938 iniciaron una nueva línea de tratamiento, tal como otros hicieron con otras formas de radiación. A los pocos meses del descubrimiento de los rayos X, a finales de 1895, los médicos empezaron a tratar incontables padecimientos con la "nueva luz" de Wilhelm Roentgen. Para enero de 1896, Emil Hube en Chicago trató dos pacientes de cáncer. Grubbe tenía la profesión de ingeniero en electricidad y metalurgista. A la fecha, los aceleradores que producen rayos X y electrones para radioterapia se pueden encontrar en virtualmente todos los grandes centros médicos en los Estados Unidos, planeados y operados por físicos médicos, con tratamientos supervisados por oncólogos especialistas en radiaciones. Primero como experimento, después como tratamiento de último recurso, la radioterapia ha evolucionado hasta ser el mejor tratamiento para muchos cánceres.

Los aceleradores de partículas juegan un papel integral en la terapia de cáncer de nuestros días. En la figura 3 se muestra la Instalación de Terapia por Neutrones del Fermilab, que tiene la máxima energía y la mayor distancia de penetración de cualquier haz de neutrones en los EUA. Los neutrones con alta velocidad (energía) son muy efectivos para eliminar tumores cancerígenos de gran tamaño. En las instalaciones de Fermilab se trataron con éxito los primeros pacientes el 7 de septiembre de 1976. Después de 25 años, se han tratado en estas instalaciones más de 3,100 pacientes.

Herramientas para la investigación biomédica

En la investigación biomédica de vanguardia, los científicos usan aceleradores de partículas para explorar la estructura de las moléculas biológicas. Usan la energía que las partículas cargadas (electrones) emiten cuando son aceleradas a una velocidad cercana a la de la luz para producir uno de los haces de luz más brillantes de la Tierra, 30 veces más poderosos que la luz del Sol y enfocado en la punta de un alfiler: radiación sincrotón. Descifrar la estructura de las proteínas es la clave para el entendimiento de los procesos biológicos y para curar las

Figura 4. Patrón de difracción de una biomelécula generado por una fuente de luz sincrotón al atravesar proteínas cristalizadas. Cortesia DESY, Hamburgo.

enfermedades. Para determinar la estructura de una proteína, los investigadores dirigen el haz de luz de un acelerador llamado sincrotrón a través de un cristal de una proteína. El cristal dispersa el haz hacia un detector. Del patrón de dispersión, las computadoras calculan la posición de cada átomo en la molécula de proteína v crean una imagen en tercera dimensión de la molécula (figura 4). Con esta técnica es posible descifrar la estructura interna de moléculas complicadas de proteínas como las enzimas. Los físicos originalmente construyeron aceleradores sincrotrones para explorar la naturaleza fundamental de la materia. Al principio veían la radiación de un sincrotrón como un problema difícil que menguaba la energía de aceleración de los electrones. Sin embargo, pronto se dieron cuenta del potencial que tenía esta energía "molesta" para crear superpoderosos rayos útiles para estudiar moléculas biológicas y otros materiales (figura 5).

Herramientas para el futuro

El futuro de la física de aceleradores no es solamente para los físicos. Tal como sucedió en el pasado, los

Figura 5, Una investigadora en la Advanced Light Source del Departamento de Energía de los EUA ubicada en el Laboratorio Nacional de Berkeley, California.

descubrimientos de mañana en la ciencia de aceleradores de partículas pueden llevar a aplicaciones inesperadas para el diagnóstico médico, la recuperación de la salud y el conocimiento de la biología humana. Las brechas entre la tecnología de los magnetos superconductores, los haces de fuentes nanométricas y la instrumentación e información tecnológica por láser darán a los físicos de altas energías nuevos aceleradores para explorar los más profundos secretos del universo, la estructura última de la materia.

Pero las brechas en la ciencia de los aceleradores pueden hacer más que avanzar en la exploración de las partículas y las fuerzas. Ningún campo de la ciencia es una isla. La física, la astronomía, la química, la biología, la medicina —todas interactúan en el esfuerzo humano de explorar y entender nuestro mundo y a nosotros mismos. La investigación en los laboratorios de física de altas energías conducirá a la siguiente generación de aceleradores de partículas— y posiblemente a nuevas herramientas para la ciencia médica. El resultado pertenece a todos.

Multinational Co-operation in the Microelectronic and Microsistems Area in the Iberoamerican Region

8th International Workshop

3-5 April 2002

Guadalajara мехісо

CMOS ASIC Design Techniques lan Grout Cosgrove Department of Electronics & Computer Engineering University of Limerick Limerick, Ireland

VLSI Design and its Applications to Networking and Computing Systems Edmundo A. Gutiérrez Domínguez MCST, Motorola Semiconductor Products Sector Puebla, México

Static Timing Analysis on ASIC Design Jason Ziomek ATMEL Corporation Chesapeak Design Centre Columbia, Maryland, EUA

Information

Federico Sandoval Gabriela Romano CINVESTAV Guadalajara, Mexico iberchip@cts-design.com

Carlos Silva

Pontificia Universidad Autónoma del Perú iberchip@pucp.edu.pe

Antonia Aguilo IBM-CNM Centro Nacional de Microelectrónica antonia.aguilo@cnm.es ch ber p IWS2002

www.gdl.cinvestav.mx/~iberchip

Mexican School on Particles and Fields

Playa del Carmen, México, October 30 to November 6, 2002

The Division of Particles and Fields of the Mexican Physical Society has dedicated the X Mexican School of Particles and Fields to celebrate the 60th anniversary of Augusto García and Arnulfo Zepeda, pioneers of this field in Latin America.

Organizing Committee

G. Contreras, Cinvestav-UM

U. Cotti, IFM-UMSNH

J. C. D'Olivo, ICN-UNAM

R. Flores, IF-UASLP

R. Huerta, Cinvestav-UM

R. Juárez, ESFM-IPN

J.L. Lucio, IFUG

A. Martínez, ESFM-IPN

O.G. Miranda, Cinvestay

M. Mondragón, IF-UNAM

M.A. Perez, Cinvestav

A. Rosado, IF-BUAP

Sponsors

CLAF, CLAFM, ICTP, Conacyt, Cinvestav IFM-UMSNH, ICN-UNAM, IF-UNAM, IF-UASLP, ESFM-IPN, IF-BUAP

Further information:

ucotti@zeus.umich.mx myriam@fisica.unam.mx mperez@fis.cinvestov.mx http://dpyc.smf.mx/School/