# AVANCE Y PERSPECTIVA Organode difusion del Centro del Investigación y de Estudios Avanzados del I.P.N.



Volumen 20 Noviembre-diciembre de 2001 México ISSN 0185-1411 \$ 25 pesos Biotecnología e ingeniería genética de plantas:

XX Aniversario de la

**Unidad Irapuato** 

# LA UNIDAD DE BIOTECNOLOGÍA E INGENIERÍA GENÉTICA DE PLANTAS CINVESTAV, IPN

Ofrece:

# Maestría y Doctorado en Biotecnología y Plantas

Maestría
Doctorado directo
(después de la licenciatura)
Doctorado tradicional
(después de la maestría)

Examen de admisión: enero y julio Informes: Coordinación Académica Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Irapuato Km. 9.6 Libramiento Norte carretera Irapuato - León Apdo. Postal 629, 36500 Irapuato, Gto., México Tel: (462) 396 00 y 396 06 FAX (462) 458 49 E mail: coordina@ira.cinvestav.mx



Centro de Investigación y de Estudios Avanzados del IPN CINVESTAV

DIRECTOR GENERAL
Adolfo Martínez Palomo
SECRETARIO ACADÉMICO
René ASOMOZA
SECRETARIO DE PLANEACIÓN
Marco Antonio Meraz
SECRETARIO ADMINISTRATIVO
Mario Alberto Osorio Alarcón

AVANCE Y PERSPECTIVA
DIRECTOR EDITORIAL
Miguel Angel Pérez Angón
EDITORA ASOCIADA
Gloria Novoa de Vitagliano
COORDINACIÓN EDITORIAL
Martha Aldape de Navarro
DISENO Y CUIDADO DE LA EDICIÓN
ROSARIO MORAIES Alvarez
FOTOGRAFIA
Carlos Villavicencio
Sección Fotografia
del CINVESTAV
CAPTURA

Josefina Miranda López María Eugenia López Rivera María Gabriela Reyna López

CONSEJO EDITORIAL J. Victor Calderón Salinas BIOQUÍMICA Luis Capurro Filograsso UNIDAD MERIDA Marcelino Cereijido FISIOLOGIA María de Ibarrola Nicolin INVESTIGACIONES EDUCATIVAS Eugenio Frixione BIOLOGÍA CELULAR Jesús González UNIDAD QUERETARO Luis Herrera Estrella UNIDAD IRAPUATO Luis Moreno Armella MATEMATICA EDUCATIVA Angeles Paz Sandoval QUIMICA Gabino Torres Vega FISICA

> Correo electrónico: avance@mail.cinvestav.mx

Tel. y Fax: 5747 37 46

Consulte nuestra página de Internet: http://www.cinvestav.mx/publicaciones

### **AVANCE Y PERSPECTIVA**

### SUMARIO

| T. | у.  | 91    | ×  | n  |  |
|----|-----|-------|----|----|--|
| mΒ | 193 | or il | σē | rΝ |  |

noviembre - diciembre de 2001

Biotecnología e Ingeniería Genética de Plantas Vigésimo aniversario de la Unidad Irapuato

- 339 Veinte años de hacer ciencia y tecnología y de formar lideres científicos Octavio Paredes López
- 345 El programa de posgrado en biotecnología de plantas Octavio Martinez de la Vega
- 349 Los virus: cómplices para descifrar procesos moleculares en plantas Julio César Vega Arrequín y Rafael Rivera Bustamante
- 357 Manipulando la sexualidad vegetal: confesiones de un "voyeur" de plantas Jean-Philippe Vielle Calzada
- 365 Producción de vacunas y compuestos farmacéuticos en plantas transgénicas Miguel A. Gómez Lim
- 377 Alcamidas en plantas: distribución e importancia Jorge Molina Torres y Abraham García Chávez
- 389 El citoesqueleto en plantas durante la mitosis y la citocinesis Magdalená Segura Nieto
- 395 Bacterias promotoras del crecimiento de plantas: agro-biotecnología R. Jiménez Delgadillo, G. Virgen Calleros, S. Tabares Franco y U. Olalde Portugal
- 401 El suelo y sus habitantes microbianos: consideraciones ecológicas Eduardo Valencia Cantero y Juan José Peña Cabriales
- 407 El ecosistema de granos almacenados Manuel Vázquez Arista
- 415 Mitos y realidades de las aflatoxinas Doralinda Guzmán de Peña
- 421 Una sinfonia de aromas Mercedes G. López
- 425 Indice del volúmen 20

Portada: La Unidad Irapuato del Cinvestav ha desarrollado durante veinte años programas de investigación y posgrado en las áreas de hiotecnología, bioquímica e ingenieria genética agrícola y alimentaria.

Foto: M. Calderwood

Avance y Perspectiva, organo de difusión del Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV, es una publicación bimestral. El número correspondiente a noviembre-diciembre de 2001, volumen 20, se terminó de imprimir en octubre de 2001. El tiraje consta de 8,000 ejemplares. Editor responsable. Miguel Angel Pérez Angón. Oficinas: Av. IPN No. 2508 esquina calzada Ticomán, apartado postal 14-740, 07000, México, D.F. Certificados de licitud del título No. 1728 y de contenido No. 1001 otorgados por la Comisión Calificadora de Publicaciones y Revistas Ilustradas de la Secretaria de Gobernación. Reserva de Títuio No. 577-85 otorgado por la Dirección General del Derecho de Autor de la Secretaria de Educación Pública. Publicación periódica: Registro No. PP09-0071, características 220221122, otorgado por el Servicio Postal Mexicano. Negativos, impresión y encuadernación: COMRAMSON, S.A. de C.V., Plaza Buena Vista No. 2 Desp. 209, 210 Col. Guerrero, México, D.F. Avance y Perspectiva publica artículos de divulgación y notas sobre avances científicos y tecnológicos. Los artículos firmados son responsabilidad de los autores. Las instrucciones para los autores que deseen enviar contribuciones para su publicación aparecen en el número enero-febrero del 2001 página 30. Se autoriza la reproducción parcial o total del material publicado en Avance y Perspectiva, siempre que se cite la fuente. Avance y Perspectiva se distribuye en forma gratuita a los miembros de la comunidad del CINVESTAV y a las instituciones de educación superior. Suscripción personal por un año: \$ 150.00



- -Compra tus libros en línea con descuentos especiales del 10%, 20% y 50% en: www.avant.com.mx
- ·Tiempo máximo de entrega: 2 semanas
- ·Costo de mensajería. 6 veces menor comparado con cualquier librería de internet internacional.
- ·Facturación en moneda nacional.
- ·Títulos en prensa, agotados, fuera de imprenta, próximas ediciones; además de la descripción, tabla de contenido y biografía del autor por título.
- ·Facilidad para enviar cotizaciones o pedidos vía fax o por e-mail.

Avant.Org S.A. de C.V. RFC: ACU-010515-LF1

Tel. (01)5370-5095 Fax: (01)5370-5094

e-mail: servicio@avant.com.mx

http://www.avant.com.mx



## Veinte años de hacer ciencia y tecnología y de formar líderes científicos

Octavio Paredes López

El Dr. Octavio Paredes López, investigador titular del Departamento

de Biotecnología y Bioquímica de la Unidad Irapuato del Cinvestav,

### El pasado: una breve mirada

En el transcurso de 1981 empezamos a llegar a Irapuato los primeros investigadores contratados con el propósito de formar la propia Unidad Irapuato. En los registros aparece que en ese año se contrataron seis personas para investigación: dos profesores titulares, dos adjuntos y dos auxiliares; número que fue creciendo con pausas diversas a lo largo de los años. En el otoño se rentó una casa en donde se establecerían laboratorios, biblioteca, salón de clases y seminarios, y área de mantenimiento; fue en los albores del 82 cuando estas actividades empezaron a tener efectos visibles y ahí nos pasamos cerca de cinco años con sueños y aspiraciones múltiples, entre otros, de tener áreas e infraestructura que nos permitieran expresamos académica y científicamente en forma más mejor, como reza la expresión popular irapuatense.

Está claro que la visión y apoyos del entonces director del Cinvestav, Manuel Ortega Ortega, jugaron un papel sobresaliente en la creación y los inicios de la unidad; en sus 20 años este grupo ha tenido la valiosa interacción y ayuda de los funcionarios del mismo nivel, adicionalmente al propio Manuel Ortega: Héctor Nava Jaimes, Feliciano Sánchez Sinencio y Adolfo Martínez Palomo. Y también se han tenido como directores de la unidad a Alejandro Blanco Labra, Ariel Alvarez Morales, Víctor Manuel Villalobos Arámbula, actualmente con permiso para ejercer el importante puesto en el gobierno federal de subsecretario de Agricultura y Ganadería, y a quien esto escribe. Es oportuno reconocer el apoyo recibido por

fue director de esta unidad hasta agosto de 2001.

la unidad en formas diversas por parte de los gobernadortes del estado de Guanajuato: Enrique Velasco Ibarra, Agustín Téllez Cruces y Carlos Medina Plascencia.

Lo que quizá puede identificarse como una segunda etapa es el traslado durante 1986 a las nuevas y actuales instalaciones, momento en el cual se constituve en una forma más evidente el grupo de ingeniería genética. Los objetivos que se establecieron inicialmente han sufrido algunas modificaciones y ajustes a lo largo de estos años. Esto es propio de cualquier institución científica y tiene que ver con la formación de recursos humanos de alto nivel que ejerzan funciones de liderazgo en la biotecnología y la ingeniería genética agrícola y alimentaria, que desarrollen todos los campos científicos y técnicos que inciden en estas áreas, con una sólida formación básica v con la capacidad de resolver problemas tecnológicos del área temática correspondiente. Las investigaciones que se llevan a cabo están asociadas íntimamente a los objetivos mencionados y se desarrollan en dos departamentos académicos: Biotecnología y Bioquímica e Ingeniería Genética de Plantas.

# El presente: pleno de optimismo

Uno de los logros mayores de la unidad ha sido llegar a un programa académico con un tronco común, seguido de campos de especialización según el laboratorio y científico que se seleccione; ello conduce necesariamente a interacciones diversas que enriquecen la formación de los nuevos líderes.

En la actualidad nuestros grupos de investigación están constituidos por 36 investigadores, 41 auxiliares de investigación (todos ellos con grados académicos o entrenamiento ulterior a la licenciatura), además de 50 asistentes académicos contratados por honorarios. El número de estudiantes es aproximadamente de 130, de los cuales más de 100 son de doctorado; además cerca de 100 estudiantes están preparando tesis de licenciatura, maestría y doctorado, y sus grados les serán otorgados por otras instituciones nacionales y extranjeras; adicionalmente, más de 55 personas realizan estancias de investigación de duración variable. Tenemos en operación 71 proyectos de investigación apoyados por fuentes nacionales diversas, que incluyen empresas de la iniciativa



privada, y 4 con financiamiento internacional; existen temáticas comunes en una buena parte de los proyectos según aconseje la estrategia científica y también es lugar común la incidencia en ellos de más de un investigador de la propia unidad. También es una práctica recurrente la estancia de nuestros estudiantes en laboratorios extranjeros líderes en su propio campo.

En estos 20 años la unidad ha tenido una estrecha interacción con diversos actores del municipio de Irapuato y del estado de Guanajuato. Nuestra entrañable comunidad de adopción, con sus calles céntricas chuecas, y sus iglesias y parques llenos del Irapuato real, se ha convertido en una ciudad intermedia con una pujanza y una vitalidad que nos llenan de esperanzas, en donde crecen nuestros hijos y con un poco de suerte quizá crecerán también nuestros nietos; es una comunidad conocida por sus fresas y poco identificada por sus nuevas y dinámicas actividades asociadas en el terreno agroalimentario con el brócoli, el espárrago, la coliflor, la elaboración de yoghurt y de saborizantes; y en el terreno industrial con la confección de ropa y de productos químicos.



Quizá la acción de la unidad que ha tenido mayor influencia en el estado de Guanajuato ha sido la formación de líderes académicos y de estudiantes de todos los niveles para varios institutos y facultades de la Universidad de Guanajuato, del Instituto Tecnológico de Celaya, del Instituto Nacional de Investigaciones Forestales y Agropecuarias, campus Celaya, y de otras instituciones de nivel preparatoria y licenciatura establecidas en toda la geografía guanajuatense, incluyendo a las universidades privadas como el Instituto Tecnológico y de Estudios Superiores de Monterrey, campus Irapuato y León, y la Universidad Iberoamericana - León: sería difícil encontrar un solo municipio en donde no se haya tenido alguna interacción académica y científica, sin dejar de lado conferencias y charlas, asesorías diversas de los investigadores y auxiliares, y de los propios estudiantes de maestría v doctorado. Por lo menos la mitad del total de estudiantes de posgrado de Guanajuato, reconocidos en el padrón del Conacyt, están inscritos en el programa de nuestra unidad; de los cuatro investigadores guanajuatenses distinguidos con el Premio Nacional de Ciencias y Artes, dos están en la unidad y contamos con la mitad de aquellos que tienen el nivel III del Sistema Nacional de Investigadores. Los días de puertas abiertas organizados en nuestras instalaciones cada dos años en promedio, y los recientes encuentros con la sociedad civil guanajuatense, son los nuevos mecanismos de diálogo e interacción.

Desde 1985 funciona el denominado Programa de Posgrado en Alimentos del Centro de la República, cuya sede central es la Universidad Autónoma de Querétaro, con la participación directa de las instituciones hermanas de San Luis Potosí, Aguascalientes y Guanajuato, Instituto Tecnológico de Celaya, y de la Unidad Irapuato; este programa de maestría y doctorado en ciencias alimentarias fue concebido por la propia unidad y ha estado en el padrón de excelencia de Conacyt desde su puesta en operación.

Fuera de Guanajuato existen pequeños grupos de egresados de nuestra unidad en la Universidad de Aguascalientes, en la Michoacana de San Nicolás de Hidalgo, en las de Guadalajara, Sinaloa y Puebla; además en el IPN, el Cinvestav-DF, la UNAM, y en otros institutos y organizaciones incluyendo el sector productivo privado. Son decenas v decenas los estudiantes extranjeros, procedentes de América Latina y de otras zonas del mundo en desarrollo, pero también de países muy avanzados, que han sido entrenados en nuestras instalaciones, tanto en programas de maestría y doctorado como en cursos de perfeccionamiento formales e informales. Nos consideramos el único grupo científico en México que se ha sujetado a evaluaciones académicas y científicas desde la hora cero, que involucró a expertos internacionales del más alto nivel y con financiamiento de la Fundación Rockefeller; esta actividad ha sido muy útil para reconsiderar y reorientar nuestras estrategias.



Podemos identificar una tercera etapa de nuestra unidad: el funcionamiento inminente del nuevo edificio de investigación en el que se enfatizarán las ciencias genómicas e inmediatamente después las ciencias proteómicas. Esta imponente construcción de 2,000 metros cuadrados fue generosamente financiada en forma muy sobresaliente y expedita por el entonces gobernador Vicente Fox Quesada; también es justo reconocer el apoyo del ex gobernador interino Ramón Martín Huerta. Estas preocupaciones no dejan de lado los genuinos intereses de nuestros académicos por resolver en el corto y el mediano plazos problemas agroalimentarios, incluyendo estudios de plantas medicinales; este aspecto está en plena coincidencia con los nuevos intereses y estrategias tecnológicas del país, recientemente incluidas de manera explícita en los programas del gobiemo federal y del propio Conacyt, y que encuentran indudablemente en la Unidad Irapuato el aliado científico más dinámico en la temática indicada.

### El futuro: lleno de retos y oportunidades

Los retos científicos y las oportunidades en este amanecer del siglo XXI y del nuevo milenio no hacen sino estimular nuestras inquietudes y nuestro entusiasmo. Las informaciones muy recientes sobre secuencias genómicas completas, o muy próximas a serlo, del ser humano, plantas, animales y microorganismos, abren nuevos e inmensos horizontes. Ahora Arabidopsis, ser humano, y Escherichia coli 0157:H7 pueden ser considerados desde un nuevo punto de vista. Los avances en la genómica, como los descubrimientos en la tecnología del DNA recombinante de hace 25 años, están cambiando la forma de cómo miramos a la vida y cómo la concebimos.

Francis Collins, el líder del consorcio público para la secuenciación del genoma humano (International Human Genome Sequencing Consortium, IHGSC) enfatizó algunos aspectos relevantes durante la reciente reunión anual de la American Association for the Advancement of Science: que el cromosoma 19 tiene mucho más genes que el 18 y que el número de genes es cerca de 30,000 en lugar de los 100,000 que era la estimación más recurrente. La levadura Saccharomyces cerevisiae tiene 6,000; la mosca de la fruta 14,000; el gusano Caenorhabditis elegans 18,000; y la planta crucífera Arabidopsis 25,000. En resumen, tenemos menos genes que una sopa de hortaliza con una mosca nadando en ella. Los humanos somos 99.9% idénticos a nivel de DNA, y la mayoría de nuestras diferencias genéticas son compartidas por muchos grupos étnicos y raciales.

En la misma reunión el líder de la corporación privada Celera Genomics, Craig Venter, rival inveterado del otro grupo IHGSC, señaló en su conferencia plenaria que la secuenciación de los 3,000 millones de pares de bases del DNA del genoma humano parecía apenas en 1990 un reto casi imposible de vencer. En la actualidad la capacidad de Celera es de secuenciar 2,000 millones de pares de bases mensuales. Con esta tasa la secuenciación del genoma humano podría lograrse ahora por un grupo de sólo 50 científicos en un plazo no mayor de seis semanas; con esta capacidad, secuenciar el genoma de una bacteria se puede lograr en una mañana. Las ciencias proteómicas tienen ahora enormes retos ante sí ya que en el caso de los seres humanos los 30,000 genes codifican para no menos de 90,000 diferentes proteínas.

Estas ciencias de frontera habrán de traemos información útil sobre el papel y la función de los genes en todos los organismos y cómo éstos pueden ser regulados y empleados para satisfacer añejos problemas de enfermedades diversas, para buscar respuestas a las crecientes necesidades alimenticias y medicinales, y para tratar de solucionar los requerimientos continuos de la sociedad ante escenarios cambiantes. Todo ello trae simultáneamente otras exigencias aparejadas como las planteadas por la bioética, la bioseguridad, la propiedad intelectual y algunas cuestiones legales.

La unidad tiene que jugar un papel más que destacado en estas ciencias en el límite del conocimiento humano; ello es esencial, so pena de quedarnos rezagados para siempre. Pero tenemos otros retos adicionales que tienen que ver con el desarrollo de nuevas herramientas que sean fáciles de instrumentar, que ayuden a resolver problemas ingentes y diversos. Estos mecanismos deberán incluir la propia formación y el entrenamiento adecuado de personal para el mejoramiento de viejos y nuevos escenarios en donde se localiza el empobrecido sector agrícola y alimentario del país. El denominador común tiene que ver con áreas temporaleras con decrecientes precipitaciones pluviales, áreas desérticas y semidesérticas donde se ha perdido una buena parte de su flora y fauna, áreas antiguamente boscosas donde la tala y la erosión posterior del suelo así como la erosión genética han sido recurrentes, que son el sitio en que ahora radica menos del 30% de la población, y en donde, por desgracia, esta cuenta sigue decreciendo. En consecuencia, en pocos años el conocimiento directo de la inmensa mayoría de los mexicanos sobre el campo, su agricultura y sus plantas medicinales será infimo; y la pregunta y la preocupación son: ¿continuará acaso disminuyendo el interés de nuestra sociedad por su fuente de alimentos y medicinas por excelencia? Y en cualquier caso, ¿qué tenemos que hacer para transformamos en una sociedad más consciente y más preocupada por la preservación del entorno y por el mantenimiento de la riqueza genómica, cuando hemos vivido históricamente a espaldas de estas gigantescas tareas?

Por otro lado consideramos que en el caso de Guanajuato, en la búsqueda de recursos financieros y alianzas diversas, habremos de contar con la valiosa ayuda y participación del actual gobernador Juan Carlos Romero Hicks, con antecedentes académicos más que reconocidos, de otras instancias académicas y científicas quanajuatenses, y de la sociedad estatal en su conjunto para alcanzar también el apoyo del gobierno federal y de otros organismos públicos y privados involucrados en el desarrollo de la ciencia y la tecnología. Como se sabe, en la actualidad es muy preocupante el bajo porcentaje del producto interno bruto global invertido en este quehacer vital para el futuro de México, y también la baja participación del sector privado en tal indicador; está más que claro que si no queremos convertirnos en un país maguilador, se tienen que mejorar en el futuro inmediato la calidad y la cobertura de la educación en todos sus niveles, formar más y mejores recursos humanos dirigidos al sector científico y tecnológico e incrementar eficientemente los espacios públicos y privados dedicados a la construcción de ciencia y tecnología con sellos primermundistas, únicas palancas capaces de sacarnos del subdesarrollo: y todo ello sin descuidar la disminución de las grandes diferencias regionales. Queremos una sociedad más justa, más participativa, y que preserve sus recursos con tecnologías sustentables, como se dice ahora, aunque a veces quizá vanalmente; que preserve sus recursos como el agua y el suelo, pero que proteja también su patrimonio genético para las futuras generaciones. Finalmente, es oportuno mencionar que se incluyen en este número de Avance y Perspectiva interesantes artículos de algunos de nuestros colegas, con motivo de los festejos del 20 aniversario de la Unidad Irapuato y del 40 aniversario del Cinvestav, sobre algunos escenarios cuya oscuridad hay que transformar en espacios de luz y creatividad de tal forma que nos conduzcan a la brevedad a estadios mucho más mejores de bienestar y desarrollo.

# Verano Científico en Laboratorios Extranjeros

La División de Partículas y Campos de la Sociedad Mexicana de Física convoca a los estudiantes de recién ingreso a maestría o que estén a punto de terminar su programa de licenciatura en física o áreas afines, a concursar por una de las becas que patrocinan laboratorios de física en los EUA y Europa para realizar estancias de dos meses en el verano del 2002.

Estas becas brindan al estudiante la posibilidad de colaborar con un grupo experimental con reconocimiento internacional, abriéndole así la posibilidad de proseguir una carrera científica dentro de la física experimental de altas energías u óptica cuántica. Las becas incluyen gastos de estancia, cubiertos por los laboratorios participantes, y de transporte, cubiertos por instituciones nacionales.

#### Laboratorios participantes en el área de física experimental de altas energías:

- · CERN, Ginebra, Suiza
- · DESY, Hamburgo, RFA
- FERMILAB, Batavia, ILL, EUA

#### Laboratorio en el área de óptica cuántica:

• Universidad Estatal de Nueva York en Stonybrook, NY, EUA

Los interesados deberán presentar antes del viernes 30 de noviembre del 2001:

- 1 Una solicitud por escrito manifestando su interés en participar en este programa científico de verano e indicando explícitamente su preferencia hacia óptica cuántica o altas energías,
- 2 una copia de su certificado de calificaciones,
- 3 una carta de recomendación de un profesor, y
- 4 una dirección electrónica y un teléfono donde puedan ser contactados.

Los candidatos finalistas serán convocados a una entrevista personal en inglés, que tendrá lugar el sábado 8 de diciembre del 2001 en el Auditorio José Adem de las instalaciones del Departamento de Física del Cinvestav en Zacatenco (Av. IPN esquina Ticomán) La documentación deberán llegar antes del 30 de noviembre del 2001 a:

#### Alberto Sánchez / Heriberto Castilla

Depto. de Física, CINVESTAV Apdo. postal 14-740 Av. IPN 2508 07000 México, D.F. Tel. 5747 3838, 5747 3800, ext. 6115 Fax. 5747 7098 asanchez@fis.cinvestav.mx castilla@fis.cinvestav.mx

#### Julián Félix Valdez

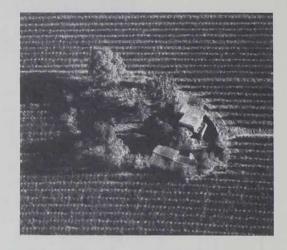
Instituto de Física, Universidad de Guanajuato Loma del Bosque No. 103 Col. Lomas del Campestre 37150 León, Gto. Tel. (47) 183089, 730905 Fax (47) 187611 felix@ifug1.ugto.mx

## El programa de posgrado en biotecnología de plantas

Octavio Martínez de la Vega

La Unidad Irapuato ofrece el programa de maestría y doctorado en biotecnología de plantas. Con ello cumple con una parte vital de su misión: formar recursos humanos de primer nivel en el área de la biotecnología de plantas. El programa doctoral se ofrece en dos modalidades: el doctorado tradicional, con una duración curricular de tres años para aquellos aspirantes que cuenten con una maestría en un área afín, y el doctorado directo, con una duración curricular de cuatro años y medio, para los aspirantes con nivel de licenciatura. El programa de maestría tiene una duración curricular de dos años.

El programa de posgrado recibe candidatos de las diversas licenciaturas en las áreas de biología, química, bioquímica y agronomía, tanto del país como del extranjero. Esta pluralidad enriquece la experiencia, tanto de estudiantes como de profesores.


Dada la diversidad de perfiles de los aspirantes, el proceso de selección de candidatos es cuidadoso y completo. Para los solicitantes nacionales, los requisitos para poder entrar en el proceso de selección son el haber estudiado una licenciatura en alguna de las áreas compatibles, tener un promedio mínimo de ocho en licenciatura, estar titulado (o con fecha definida de presentación del examen final). El proceso de selección consta de tres etapas: la primera de ellas es un examen de conocimientos básicos de biología, química, bioquímica, lógica y matemáticas. Los aspirantes aprobados en esta etapa pasan al día siguiente a una serie de entrevistas con tres profesores. En estas entrevistas se evalúan las actitudes,

El Dr. Octavio Martínez de la Véga es coordinador académico de la Unidad Irapuato del Cinvestau aptitudes y experiencia de los candidatos. A los candidatos que aprueban esta segunda etapa se les proporciona un artículo científico para su lectura y análisis y al día siguiente presentan cada uno de ellos en forma individual el artículo ante un comité de tres profesores. En esta etapa del proceso se evalúa la capacidad de los candidatos para asimilar literatura científica, capacidad indispensable para su éxito en el programa. Los candidatos aprobados, que no tienen el grado de maestría, son recomendados por los comités de profesores para el programa de maestría o doctorado directo, dependiendo de su perfil y experiencia.

Los estudiantes egresados de nuestro programa de maestría pueden optar por ingresar al programa doctoral sin necesidad de pasar nuevamente por el proceso completo de selección. Los solicitantes extranjeros son evaluados curricularmente por un comité de cuatro profesores y se trata de asegurar que el nivel de conocimientos, habilidades y actitudes necesario para tener éxito en el programa sea cubierto con holgura.

El programa está basado en una estrecha relación entre los conocimientos teóricos adquiridos en el aula y la praxis científica en el laboratorio. El perfil del egresado de maestría demanda que sea un profesional científico de alto nivel, capaz de colaborar en proyectos de investigación y docencia. El perfil del egresado de nuestro doctorado exige que éste sea un científico competente para realizar investigación científica de manera independiente, de alta calidad. Para lograr estos objetivos nuestro programa consta de una etapa de cursos obligatorios para todos los estudiantes y una etapa de desarrollo de un proyecto de investigación dirigido por un profesor y asesorado por un comité.

Los estudiantes admitidos a nuestro programa pueden ser divididos en dos grandes grupos: los que han tenido contacto anterior con el área de la biotecnología de plantas, ya sea durante el desarrollo de su tesis de licenciatura o estancias de investigación (como el verano de la investigación científica) y los estudiantes para los cuales el área es completamente nueva. Los estudiantes del primer grupo generalmente ya tienen una idea muy clara de la línea de investigación a la cual desean integrarse, mientras que los del segundo grupo necesitan mayor orientación al respecto.



Una vez inscritos en el programa, todos los estudiantes deben aprobar un núcleo de seis cursos obligatorios. Bioquímica Estructural, Genética y Biología Molecular I, Métodos Experimentales, Biología Vegetal, Taller de Diseño y Evaluación de Proyectos y Biotecnología. Estos cursos son ofrecidos en serie, de manera que los estudiantes pueden concentrarse adecuadamente en la materia que están tomando. Un gran número de profesores participa en los cursos obligatorios, los cuales son revisados periódicamente por el Colegio de Profesores, evaluando su pertinencia y eficiencia. Los estudiantes de doctorado deben cursar adicionalmente a los anteriores un curso, ya sea Biología Molecular II, Microbiología o Bioestadística. Adicionalmente existen cursos optativos que los estudiantes pueden tomar, en acuerdo con su director de tesis y comité tutorial.

Después de haber aprobado los cursos obligatorios, los estudiantes deben seleccionar la línea de investigación que les resulte más atractiva y para ello se deben integrar a uno de los laboratorios de la unidad. El proceso de selección de laboratorio y asesor es libre, aunque acotado por la disponibilidad de lugares en cada uno de los laboratorios. Los estudiantes indecisos pueden realizar estancias cortas en los laboratorios de su interés para ayudarlos a decidir. Cuando el proyecto de investigación lo demanda, es posible la codirección de tesis por dos profesores.

Al seleccionar su director de tesis, el estudiante queda integrado a uno de los dos departamentos de la unidad: Biotecnología y Bioquímica o Ingeniería Genética de Plantas. En este punto se le asigna al estudiante de maestría un comité asesor formado por un mínimo de tres y un máximo de cinco profesores; para los estudiantes de doctorado el comité debe estar formado por un mínimo de cinco y un máximo de siete investigadores.

Durante el desarrollo del proyecto de investigación el estudiante debe presentar anualmente sus avances en un seminario departamental, el cual es formalmente evaluado. Para poder optar por la presentación de su examen de grado, los estudiantes de maestría deben haber concluido su proyecto a satisfacción del director de tesis y del comité tutorial y haber escrito su tesis. Los estudiantes de doctorado, además de lo anterior, deberán tener aprobado para publicación al menos un artículo científico con arbitraje estricto en una revista indexada.

Hasta la fecha se han graduado 75 maestros en ciencias y 68 doctores en el programa. Con 143 graduados, nuestro programa es uno de los más productivos en cuanto a formación de recursos humanos en el país en el área de la biotecnología. Actualmente el programa cuenta con alrededor de 130 estudiantes inscritos, el 80% de ellos en el programa de doctorado y el resto en el programa de maestría.





# Mexican Workshop on Particles and Fields

November 14-20, 2001

Zacatecas, México

## **Invited Speakers**

J. Bonn

A.J. Buras

R. Cashmore

J. Conway

G. Contreras P.S. Cooper

J. Dos Anjos

R. Earbacher

A. Farilla

R. Flores-Mendieta

N. Fornengo

E. Jenkins

W.C. Louis

O.G. Miranda

A. Mondragón

G. Pancheri

S. Pastor

J.S. Russ

A. Santoro

N. Torngvist

A. Wagner

J. Wambach

H-J. Weber

A. Wirzba

J. Wudka

J. Wudka

C.P. Yuan

J. Gutenberg U. Tech. U. Munich

CERN

Rutgers U.

Cinvestav-UM

Fermilab

CBPF

Fermilab

INFN-Rome IF-UASLP

INFN-Torino

U. California, San Diego

Fermilab

Cinvestav-D.F.

IF-UNAM

INFN

Tech. U. Munich

Camegie Mellon U.

LAFEX/CBPF

Helsinki U.

DESY

Darmstadt U.

U. Virginia

FZ Julieh

U. California, Riverside

Michigan State U.



For information please contact

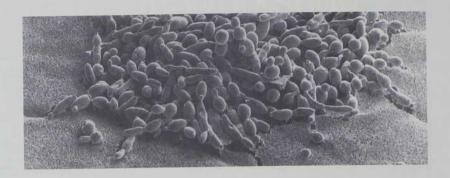
taller2001@dpyc.smf.mx

http:/dpyc.smf.mx/Workshop/

Organized by the Division
Particles and Fields of the Mexican Physical Society

# Los virus: cómplices para descifrar procesos moleculares en las plantas

Julio César Vega Arreguín y Rafael Rivera Bustamante


#### Centenario

Recientemente, en 1998, los virólogos tuvimos la oportunidad de festejar un aniversario muy importante en nuestra área: el centenario de la virología. La virología como ciencia nació con el descubrimiento del agente causal de una enfermedad que producía el efecto mosaico y distorsiones en plantas de tabaco. En ese año, Beijerinck publicó su artículo "Sobre el contagium vivum fluidum como causa de la enfermedad del manchado de las hojas de tabaco" en el cual por primera vez mencionó que el agente patogénico tenía características únicas que lo diferenciaban de otros patógenos. Por ejemplo, a diferencia de las bacterias, este nuevo patógeno podía pasar por filtros de porcelana y difundirse a través del agar. Beijerinck también observó que dicho agente infeccioso sólo podía ser cultivado usando plantas vivas y en crecimiento. A raíz de ese descubrimiento, se ha dado a conocer que existe una gran cantidad de enfermedades causadas por virus tanto en plantas como en animales. A continuación presentamos una breve descripción de los virus y cómo su estudio ha contribuido enormemente al desarrollo de las diversas disciplinas científicas.

No es extraño que la gran mayoría de las personas asocien la palabra virus (que significa veneno en latín) con algo verdaderamente terrible y peligroso. Esta percepción se ha originado principalmente por las enfermedades que ocasionan, y que van desde el resfriado común hasta el SIDA, pasando por la rabia, la poliomielitis y la viruela.

Dirección electrónica: rrivera@ira.cinvestav.mx

El Dr. Rafael Rivera Bustamante es investigador titular del Departamento de Ingeniería Genética de la Unidad Irapuato del Cinvestav. Julio Cesar Vega Arreguín es auxiliar de investigación del mismo departamento.



#### ¿Qué es un virus?

Explicar qué es un virus de una manera sencilla (a quienes no son especialistas) es relativamente complicado. Las definiciones en la literatura incluyen descripciones sui géneris como la que acuñó el Premio Nobel André Lwoff a mediados del siglo pasado: "Los virus, ... son los virus". Desde el punto de vista molecular, los virus consisten básicamente de una o varias moléculas de ácido nucleico (su genoma) protegida(s) por una cubierta proteica o cápside. La gran diversidad de tipos de virus que existe en la naturaleza es, probablemente, sólo un reflejo de la diversidad de tipos de genomas virales que han surgido durante la evolución. Por ejemplo, los virus pueden tener su genoma codificado en moléculas de DNA o RNA v pueden ser de cadena sencilla o de cadena doble; el genoma puede ser lineal o circular y, como se mencionó antes, el genoma puede estar contenido en una sola molécula (genoma monopartita) o en varias (genoma multipartita). Estos genomas son secuencias de nucleótidos altamente organizadas, con distintos genes que codifican la información para la producción de diversas proteínas involucradas en la replicación del genoma viral y en su dispersión.

Los virus son elementos genéticos que actúan como parásitos celulares especializados. Durante millones de años se han mantenido corrompiendo los mecanismos moleculares de la célula que parasitan (llamada célula huésped) para su propio beneficio y han coevolucionado con ella con el fin de explotar sus fuentes de energía, sus constituyentes preformados y su maquinaria biosintética. Casi todos los grupos de organismos vivientes, multicelulares o unicelulares (plantas, animales, hongos, protozoarios y bacterias) son susceptibles de ser infectados por virus.

El principal motivo para estudiar a los virus ha sido conocerlos mejor para poder generar herramientas que nos permitan su control o, al menos, la disminución de sus dañinos efectos. En este sentido se ha dado un avance considerable en algunas áreas. Por ejemplo, en medicina se han obtenido vacunas cada vez más eficientes contra algunos virus y se han diseñado estrategias de control que detienen su diseminación. También se han diseñado fármacos que atacan directamente algunas de las funciones virales. En la investigación agrícola, se han podido obtener variedades con resistencia a uno o más virus; se han diseñado estrategias para controlar a los insectos vectores y para obtener variedades libres de virus (cultivo de meristemos y microinjertos), e inclusive se han desarrollado sistemas confiables y rápidos para la detección de virus. Sin embargo, a pesar de haberse cumplido cien años del estudio de los virus, sólo recientemente, gracias al estudio de las funciones genéticas de virus modelo y de su interacción con la célula huésped, hemos empezado a entender los procesos de patogénesis virales, i.e., cómo inducen síntomas, cómo interaccionan con el genoma huésped, etc.

El estudio de los virus ha tenido un gran impacto en otras áreas de la ciencia. Se puede decir que la biología molecular nació como disciplina científica teniendo a los virus de bacterias (bacteriófagos) como algunos de sus actores principales. En la tabla 1 se presentan algunos eventos claves en los primeros cien años de la virología. Otro ejemplo impactante sería el caso de algunos virus (como los retrovirus, adenovirus y herpesvirus), que ya se han utilizado en medicina para el diseño de vehículos o vectores de genes en estrategias de terapia génica para el tratamiento de enfermedades como el cáncer, la fibrosis cística y la artritis.

Tabla 1. Acontecimientos destacados en el primer siglo de la virología.

| Año         | Evento                                                                                                                                                                                                                                           | Investigadores                                   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1898        | Nacimiento de la virología con el descubrimiento del virus del mosaico del tabaco (TMV).                                                                                                                                                         | Beijerinck                                       |
| 1909        | Reconocimiento de la primera enfermedad humana (poliomielltis) causada por un agente filtrable (virus).                                                                                                                                          | Landsteiner y Popper                             |
| 1911        | Se registra la primera asociación de un virus con un tumor en pollos.                                                                                                                                                                            | Rous                                             |
| 1915 - 1917 | Descubrimiento de los virus que infectan bacterias (bacteriófagos).                                                                                                                                                                              | Twort y d'Herelle                                |
| 1930        | Nacimiento de la biología molecular con los bacteriótagos como actores importantes.                                                                                                                                                              | Luria, Delbruck.                                 |
| 1935        | Purificación y cristalización del TMV.                                                                                                                                                                                                           | Stanley                                          |
| 1952        | Descubrimiento de que la información genética de los bacteriófagos está codificada en sus ácidos nucleicos (DNA).                                                                                                                                | Hershey y Chase                                  |
| 1956        | Primera evidencia de que hay genomas de RNA con la demostración de que el RNA puro de TMV es infectivo.                                                                                                                                          | Fraenkel-Conrat y<br>Singer; Gierer y<br>Schramm |
| 1957        | Concepto de virus lisogénicos que demuestra que los virus se pueden integrar al genoma de la célula huésped y permanecer latentes por mucho tiempo.                                                                                              | Lwoff                                            |
| 1961        | Usando bacterias y bacteriófagos, se obtuvo la primera evidencia del papel del RNA como mensajero (mRNA).                                                                                                                                        | Brenner, Jacob y<br>Messelson                    |
| 1970        | Descubrimiento de la franscriptasa reversa (RT) en retrovirus. Esta se convirtió en una importantísima herramienta en biología molecular (en la obtención de bancos de cDNA, de sondas para hibridación molecular, en estudios genómicos, etc.). | Baltimore / Temin y<br>Mizutani.                 |
| 1977        | Secuenciación del primer genoma (bacteriótago fx174).                                                                                                                                                                                            | Sanger y col.                                    |
| 1981        | Descubrimiento del virus de la inmunodeficiencia humana (HIV) causante del SIDA.                                                                                                                                                                 | Gallo y Montagnier                               |

#### Virus de plantas

Existe una gran cantidad de virus que infectan plantas y que causan numerosos daños a los cultivos. Los virus de plantas se pueden transmitir por diferentes vías, pero la transmisión por insectos es la que tiene mayor repercusión ya que por ser tan eficiente se usa una gran cantidad de insecticidas químicos para controlar a dichos vectores. Esto repercute de manera importante en los costos de producción agrícola y en la contaminación ambiental.

El 90 % de los virus de plantas tienen genomas de RNA, el 10 % restante posee genomas de DNA. En general, los virus de RNA tienen su ciclo en el citoplasma mientras que los virus de DNA pueden tener su replicación asociada al núcleo. De esta manera, los virus de DNA presentan mecanismos de regulación similares a los de la planta huésped, mientras que los virus de RNA tienen mecanismos de regulación generalmente diferentes.

Desde hace ya varios años varios grupos de investigación, incluido el nuestro, han trabajado en la obtención de plantas resistentes a diferentes virus mediante técnicas de ingeniería genética. Las principales estrategias para obtener estas plantas (llamadas plantas transgénicas) se basan en la expresión de proteínas del propio virus o de sus ácidos nucleicos para interferir con la replicación o los procesos de transcripción virales. Esta alternativa es muy interesante y no podemos darnos el lujo de ignorar



su potencial tanto en el especto económico como en el ambiental.

# Geminivirus: "gemelos" incómodos para las plantas

El modelo de estudio que hemos escogido para tratar de descifrar algunos aspectos biológicos y moleculares del ciclo infectivo y de la interacción de un virus con su planta huésped son los geminivirus. Como ha ocurido con otros grupos de virus, en la literatura se presentan evidencias de algunas enfermedades causadas por geminivirus desde hace varios siglos. Estas enfermedades se caracterizan por presentar síntomas como enrollamiento de la hoja, rugosidad, mosaicos amarillos, enanismo de la planta, clorosis y generalmente una disminución en el rendimiento.


Sin embargo, fue hasta la década de los años 1970 cuando se determinó que el agente causal de una enfermedad que producía un mosaico dorado en frijol era un virus con características únicas que incluían una morfología geminada (dos icosahedros unidos por un lado) y un genoma circular de DNA de cadena sencilla. A partir de entonces, el número de geminivirus registrados ha ido creciendo aceleradamente hasta llegar a ser una de las familias más numerosas.

Los geminivirus son una familia de virus patógenos de plantas que ocasionan considerables pérdidas y daños en numerosos cultivos alrededor del mundo, distribuyéndose principalmente en zonas tropicales y subtropicales. Son transmitidos por insectos vectores a una gran variedad de plantas mono- y dicotiledóneas. La distribución geográfica del insecto vector es la responsable de la distribución paralela del geminivirus que transmite.

La familia *Geminiviridae* se divide en tres géneros según su espectro de huéspedes (si infectan mono o dicotiledóneas), a su insecto vector (mosquita blanca o chicharrita), y a su estructura genómica (mono o bipartita). En México, a la fecha, sólo se han registrado virus pertenecientes al genero *Begomovirus*, los cuales infectan dicotiledóneas, son transmitidos por mosquita blanca (*Bemisia tabaci*) y su genoma es generalmente bipartita (dividido en dos moléculas de DNA). Los virus huasteco del chile (PHV) y del mosaico dorado del chile (PepGMV) son los más importantes en la horticultura mexicana y se encuentran diseminados en todo el país en cultivos de solanáceas (chile, jitomate, tabaco, tomatillo)<sup>1</sup>.

Además del interés que los geminivirus despertaron como agentes causales de muchas enfermedades de importancia económica, el hecho de tener un genoma de DNA atrajo la atención de muchos grupos que se dedicaron a explorar la posibilidad de usar los geminivirus como vectores para la introducción de material genético en plantas. Una segunda razón poderosa era la perspectiva de usar los geminivirus como modelos de estudio de manera similar a los trabajos realizados con bacteriófagos a mediados del siglo pasado o un poco más tarde con algunos virus de DNA (SV40, adenovirus) en sistemas animales.

La posibilidad de usar los geminivirus como vectores para introducir DNA foráneo en plantas ha ido perdiendo



interés al verificarse que estos virus presentan restricción al aumento de tamaño de su genoma, es decir, cuando se les introducen genes foráneos que aumentan el tamaño del genoma los virus quiméricos tienden a eliminar ese DNA en un intento de recuperar su tamaño original. Por otro lado, los geminivirus sí están respondiendo a las expectativas de ser usados como modelos para estudiar algunos procesos moleculares en plantas. Algunos de los avances se describen brevemente a continuación.

El genoma de los Begomovirus, con los cuales trabajamos en nuestro laboratorio, consiste en dos componentes denominados A y B. El componente A contiene toda la información que las proteínas virales requieren para la replicación, transcripción y encapsidación del DNA del virus, mientras que el componente B codifica para las proteínas involucradas en el movimiento célula a célula y el movimiento sistémico del virus en la planta, así como en el movimiento núcleocitoplasma. Recientemente se ha dado a conocer la naturaleza multifuncional de varias proteínas virales. Por ejemplo, la proteína Rep presenta características muy similares al antígeno T del SV40 y se cree que puede alterar el ciclo celular en una célula infectada. Se encuentra que, al menos en el caso del virus del mosaico dorado del tomate, el virus es capaz de inducir la expresión de la proteína llamada PCNA, que es una proteína

accesoria a la DNA polimerasa d (replicativa). Asimismo, hay varios ejemplos donde se muestra una interacción entre una proteína viral y la proteína celular retinoblastoma. Esta proteína ha sido involucrada en diferentes mecanismos de control del ciclo celular. No está todavía claro si el virus logra que una célula diferenciada entre otra vez al ciclo celular o solamente induce parte de la maquinaria de síntesis de DNA². De cualquier forma, por primera vez se tiene en plantas un sistema adecuado para estudiar diferentes procesos del ciclo celular.

Por otro lado, análisis de las regiones promotoras de varios genes virales han mostrado que, aparentemente, los geminivirus han "secuestrado" una serie de señales de regulación propias de algunos genes de la planta. Esto permitiría a los virus tener un patrón de regulación y expresión que facilitará la replicación de virus en las células vegetales. También se ha sugerido que el virus ha aprendido a inducir genes que son requeridos para su replicación.

En nuestro laboratorio, una de las líneas principales de investigación es precisamente el estudio de los mecanismos regulatorios de la expresión de los genes del geminivirus, utilizando como modelos el virus huasteco del chile (PHV) y el virus taino del moteado del tomate (TTOMOV), entre otros. El análisis de las secuencias regulatorias en el genoma viral ha contribuido a progresos

significativos en el conocimiento de los procesos moleculares durante el ciclo de infección de los geminivirus. Por ejemplo, se han determinado elementos importantes para el reconocimiento específico de la proteína Rep por su propio origen de replicación (lo que explicaría porqué una proteína Rep sólo puede reconocer su propio origen de replicación y no el de otro virus)3. También se han encontrados elementos involucrados en la regulación de la transcripción del gen de la proteína de la cápside. Este elemento, denominado CLE, sería el blanco funcional de una proteína viral (TrAP) que es la encargada de activar los genes tardíos4. Estos elementos se podrían utilizar como reguladores de la expresión de transgenes bajo el control del promotor del gen de la proteína de la cápside. Así, el transgén solo se expresaría cuando el virus esté presente, lo que abre la puerta para muchas aplicaciones biotecnológicas.

Es claro, pues, que el estudio de los geminivirus a diferentes niveles puede contribuir no solamente a diseñar estrategias de control de estos patógenos importantes, sino también a descifrar algunos mecanismos moleculares en plantas<sup>5</sup>.

## Origen y evolución de los virus

El problema del origen de los virus ha sido histórica y sutilmente evitado por los biólogos evolucionistas que estudian el origen de la vida. El estudio del origen y evolución de los virus ha dado lugar a no pocos debates acerca de si los virus surgieron antes o después de la primera célula hace más de 3,500 millones de años6. El hecho de que utilicen el mismo código genético que los organismos celulares es un reflejo de que dicho código surgió antes de que aparecieran los virus, aunado a la dependencia del virus en la maquinaria celular para la síntesis de proteínas y la replicación de los ácidos nucleicos; y por otro lado, la observación de que los aminoácidos de proteínas virales ocurren en proporciones similares a las proteínas de otros organismos nos lleva a pensar que a pesar de la simplicidad estructural de los virus es muy poco probable que éstos hayan precedido a los primeros organismos celulares.

Existen varias hipótesis, algunas más sustentadas que otras, sobre el origen de los virus. La primera hipótesis, que se aplica más bien al origen de los virus de RNA, es que éstos descienden de formas primitivas precelulares, y más directamente del "mundo del RNA", en el cual las moléculas de RNA eran capaces de catalizar todas las reacciones necesarias para sobrevivir y replicarse. Se ha propuesto que las estructuras parecidas al RNA de transferencia y que se encuentran en el extremo 3' de algunos virus de RNA son fósiles moleculares que se han mantenido para alguna función determinada. De esta manera, los virus de RNA representan probablemente formas modificadas descendientes de un mundo de RNA prebiótico que llegaron a parasitar a las primeras células.

Otra hipótesis para proponer el origen de los virus es que pudieron haber evolucionado por simplificación o degeneración de organismos unicelulares. Esta idea, sin embargo, ha perdido interés entre los virólogos evolucionistas debido a que ni aun los virus conocidos más complejos y elaborados se asemejan en algún aspecto fenotípico o genotípico a la célula más sencilla. Por otro lado, las similitudes funcionales entre los virus de DNA y elementos genéticos celulares como los plásmidos y los transposones han dado lugar a una tercera hipótesis que propone que los virus se desarrollaron a partir de este tipo de elementos genéticos. Este último punto de vista es actualmente uno de los más atractivos y con él se pretende explicar en forma más objetiva el origen de los virus?

Existen diversos mecanismos por los cuales los virus adquieren variabilidad genética que los convierte en grandes exploradores del espacio evolutivo. Las fuentes más importantes de variación genética en los virus y a través de la cual puede actuar la selección natural son las mutaciones y la recombinación genética.

Ahora bien, una de las limitaciones principales en el estudio de la evolución de los virus es que no existen fósiles virales con los cuales se pueda construir una historia evolutiva, como ocurre con las plantas, vertebrados y otros organismos que sí dejan sus huellas fósiles en los sedimentos y de donde se obtiene invaluable información sobre su pasado. Sin embargo, un aspecto importantísimo es que actualmente contamos con su secuencia de bases, es decir, su genotipo. La comparación de estas secuencias ha llevado a establecer en los últimos años relaciones evolutivas entre genes virales y no virales, construyendo así algunos posibles eventos de la evolución viral. Adicionalmente, se ha observado que los análisis comparativos de las secuencias nucleotídicas de los

genomas virales, así como de las secuencias de aminoácidos, por lo general confirman el agrupamiento o clasificación tradicional de los virus. Y por si esto fuera poco, dichas comparaciones han mostrado además homologías inesperadas entre genes de virus de diferentes grupos que habían sido considerados nada o muy poco relacionados entre ellos, así como homologías entre genes virales y no virales. De esta manera, por medio de análisis comparativos de secuencias de los virus que existen actualmente, podemos inferir algunas propiedades y características de sus ancestros. Podemos observar también de forma directa el tipo y la tasa de los cambios evolutivos que están ocurriendo en algún virus determinado.

#### Notas

- I.Torres-Pacheco et al., Phytopathology 86, 1186 (1996).
- L. Hanley-Bowdoin et al., Crit. Rev. Plant Sci. 18, 71 (1999).
- 3. G. Argüello-Astorga et al., Virology. 203, 90 (1994).
- 4. R. Ruiz-Medrano et al., Virology 253, 162 (1999).
- I. Torres-Pacheco et al., Rev. Mex. Fitopatología 14, 88 (1996).

6. J.C. Vega-Arreguín, El origen de la vida sobre la tierra, BEB 15, 184 (1996).

7. D.J. McGeoch y A.J. Davison, en *Molecular Basis of Virus Evolution* A. Gibbs, C. Calisher y F. García-Arenal, eds. (1995).



## Programa de posgrado

## Centro de Investigación y de Estudios Avanzados del IPN

Ciencias Biológicas y de la Salud

#### Doctorado

Biología cetular
Biomedicina molecular
Bioquímica
Ciencias marinas
Farmacología
Neurobiología cetular y molecular
Fisiología cetular y molecular
Fisiología médica y experimental
Genética y biología molecular
Patología experimental

#### Maestria

Biomedicina molecular
Bioquímica
Biológia marina
Farmacologia
Neurobiologia celular y molecular
Fisiologia celular y molecular
Fisiologia médica y experimental
Genética y biología molecular
Patologia experimental

## Ciudad

Distrito Federal

Distrito Federal
Distrito Federal
Mérida
Distrito Federal

# Cinvest

#### Informes:

México, D.F. Zacatenco Tel: (01) 5747 3800, Ext.: 3886 y 3888 http://www.cinvestov.mx

Sur

Tel: (01) 5483 2800 http://www.cinvestov.mv/die

Irapuato, Gto.

62 3 96 06 http://www.lra.cinvestav.mx

#### Guadalajara, Jal.

Tel: 31 34 55 70 Fax: 31 34 55 79 http://www.gdla.cinvestav.mx

Mérida, Yuc.

Tel: (9) 981 29 31 981 29 05 http://www.mda.cinvestav.mx

Querétaro, Qro.

Tel: (4) 22 11 9913 22 11 9940

http://www.cinvestav.mx/queretaro

Saltillo, Coah.

Tel: (8) 488 1019 488 1979 Http://www.sattillo.cinvestav.mx

#### Doctorado

Ciencias química

#### Maestria

Ciencias químico Física Física aplicada

Vatemáticas

#### Ciudao

Distrito Federal Distrito Federal Mérida Mérida Distrito Federal

Cludad

#### Maestria

Investigaciones educativas Matemática educativa Ecologia humana

#### . . .

Maestría
Biotecnología de plantas
Control automático:
Ingenieria eléctrica
Biotectrónica
Computación
Comunicaciones
Electrónica del estado sólido

Mecatrónica Ingeniería eléctrica

Control automático
Telecomunicacione

rateriales ngenieria metalúrgica ngenieria cerámica

#### Ciudad

Distrito Federal Irapuato Distrito Federal Distrito Federal

Constitution of the last of th

Querétaro Saltillo Saltillo

# Sociales y Humanidades

Tecnología y Ciencias

de la Ingenieria

#### Doctorado Biotecnología

Doctorado

Investigaciones educativas

Matemática educativa

Biofecnología de plantas

Control automático
Ingeniería eléctrica
Bioelectrónica
Computación
Comunicaciones
Electrónica del estado sólido
Mecatrónica
Ingeniería eléctrica
Control automático
Telecomunicaciones

Ingenieria metalúrgica

## Manipulando la sexualidad vegetal: confesiones de un "voyeur" de plantas

Jean-Philippe Vielle Calzada

Hace ya algunos años que padezco de una extraña desviación sexual. Víctima de una carencia total de pudor y de una intensa fascinación por el erotismo vegetal, me paso la vida pensando en los órganos genitales de las plantas. Disfruto días enteros observando pistilos florales. manipulando ovarios y triturando óvulos con parsimonia y dedicación. Pocas personas entienden que a las plantas también les encanta el sexo. En realidad, la gran mayoría de los vegetales comestibles se reproducen de manera sexual. Fue a inicios del siglo pasado que dos de mis antecesores —probablemente padeciendo en silencio la misma desviación que vo- descubrieron que en las plantas el sexo gira en torno a un proceso de doble fecundación. En 1898, el biólogo ruso Sergius Nawashin (figura 1a) mostró que son dos las células reproductivas masculinas (llamadas células espermáticas) las que participan en la formación de una semilla después de fecundar dos células reproductivas femeninas. Pocos meses después, el francés Leon Guignard (figura 1b) constató la naturaleza doble del fenómeno, confirmando así -para mi alegre deleite- que las plantas al hacerlo al dos por uno representan el sublime paroxismo del libertinaje reproductivo.

Sin sexo vegetal no habría semillas comestibles. En las plantas con flores la doble fecundación se inicia cuando un grano de polen es transportado hasta la superficie del pistilo, el órgano reproductivo femenino que se encuentra localizado en el centro de la flor. Es dentro del pistilo que se desarrollan los óvulos, los portadores de los gametos femeninos. Dentro del óvulo se forma una estructura

El Dr. Jean-Philippe Vielle Calzada es investigador titular del Departamento de Ingeniería Genética de Plantas de la Unidad Irapuato del Cimpostor

Dirección electrónica: vielle@ira.cinvestav.mx

multicelular, que llamamos saco embrionario, y que contiene las células reproductivas femeninas. Después de germinar en la superficie del pistilo, el grano de polen forma un tubo (el tubo polínico) que se lanza a las profundidades del óvulo para penetrar el saco embrionario y depositar cautelosamente dos células reproductivas masculinas en la vecindad de los gametos femeninos. El embrión se forma en la intimidad del óvulo, después de la fusión de una célula espermática con la célula huevo. La fusión de la segunda célula espermática con una voluminosa célula central da lugar a la formación del endospermo, un tejido de abundante contenido protéico que es indispensable para la sobrevivencia del embrión, y cuyo enorme valor nutritivo constituye en los cereales comestibles (maíz, arroz y trigo, por ejemplo) la principal fuente de aminoácidos esenciales para el ser humano. Después de la doble fecundación, el óvulo se transforma progresivamente en una semilla.

# Apomixis: el único embarazo nervioso que funciona

A pesar de que la doble fecundación es el atributo sexual favorito de la mayoría de los vegetales comestibles, en ciertas plantas existe el fenómeno de apomixis, uno de los mecanismos reproductivos más misteriosos y fascinantes que existen en la naturaleza. Al igual que mi tía Ita (figura 1c), que desde su tiema juventud decidió asumir una beata vida de abstinencia y recato, las plantas que se reproducen por apomixis han renunciado completamente al sexo. Sin embargo, a diferencia de mi tía, estas plantas son capaces de reproducirse formando embriones sin necesidad de fecundación. Las células reproductivas femeninas de las plantas apomícticas contienen todos los genes necesarios para formar una planta adulta (no se dividen por meiosis, y por lo tanto no pierden la mitad de sus cromosomas) y logran formar embriones de manera autónoma, sin que la célula huevo sea fecundada por una célula espermática masculina. En algunos casos el endospermo se forma también de manera autónoma. dando así lugar a una semilla viable genéticamente idéntica a la planta madre1.

La apomixis es un método de clonación natural a través de semillas presentes en más de 350 especies que incluyen los mangos, la mayoría de los cítricos, los manzanos y varios pastos forrajeros. La transferencia







Figura 1. (a) Sergius Nawashin, descubridor de la doble fecundación en 1898, (b) Léon Guignard, quién en 1899 documentó la doble fecundación en *Lillum martagon* L. (c) Carmen Calzada (mi tía Ita; 1899-1995) quién decidió vivir una vida de abstinencia y recato en San Luís de la Paz, Gto.

genética de la apomixis a otras plantas de cultivo -- y principalmente a los cereales comestibles, que se reproducen todos de manera sexual—constituve uno de los mayores retos que enfrenta la biotecnología agrícola moderna. En la actualidad, la mayoría de las semillas mejoradas que se obtienen comercialmente son el resultado de un largo proceso de hibridización por el cual ciertas plantas que presentan características agrícolas interesantes son seleccionadas y cruzadas. El valor agrícola de las plantas híbridas se mantiene sólo durante un ciclo de cultivo, pues en la semilla de segunda generación las características deseables se pierden al separarse los rasgos genéticos que se encontraban combinados en el híbrido. Como consecuencia, en el caso del maíz los campesinos y agricultores del mundo entero se ven obligados a comprar semilla mejorada año tras año si quieren mantener altos rendimientos. La apomixis permitiría que se pueda sembrar recurrentemente la semilla que los agricultores producen a partir de variedades locales, lo que no es posible con los híbridos comerciales disponibles actualmente. A diferencia de otras estrategias que pretenden eliminar por completo la posibilidad de que el agricultor utilice para sembrar semillas obtenidas a partir de su propia cosecha (como es el caso del controvertido sistema Terminator que proponía comercializar la empresa Monsanto), la apomixis ofrece una oportunidad única de otorgar a los productores la libertad operativa que requieren para agilizar el desarrollo de variedades específicamente adaptadas a condiciones locales, usando y conservando mayor diversidad genética.

Hace algún tiempo la apomixis representaba un verdadero desafío a las estrategias comerciales tradicionales que imperan en las grandes compañías transnacionales que se dedican a la producción y venta de semillas

mejoradas. Sin embargo, esta tendencia ha sido revertida en los últimos años, pues empresas como Syngenta, Dupont o Monsanto han entendido que la apomixis en plantas de cultivo puede también contribuir a disminuir sustancialmente sus costos de producción, simplificando los esquemas actuales involucrados en la producción de líneas parentales en programas de mejoramiento clásico. Esta cualidad establecería condiciones más eficientes de manejo, mejoramiento y producción agrícola. La apomixis promete revolucionar el mejoramiento de plantas al establecer un sistema que permite mantener invariables las características de cualquier variedad vegetal, incluyendo los híbridos, a través de inumerables generaciones.

# Arabidopsis thaliana: un modelo para estudiar el sexo vegetal

A pesar de su importancia en la producción de semillas, tenemos un conocimiento muy limitado sobre las bases genéticas y los mecanismos moleculares que controlan el desarrollo de las células reproductivas, la formación de semillas sexuales y el fenómeno de apomixis. El estudio de estos procesos se complica al constatar que ocurren en las profundidades de la flor, y que son tan sólo un puñado de células las que están involucradas en la formación de semillas. Sin embargo, el alto grado de conservación que presentan los procesos reproductivos en la mayoría de las plantas sugiere que la formación de los gametos femeninos y la doble fecundación dependen de mecanismos cuya regulación genética y molecular es muy similar en la mayoría de las especies, y en particular en las plantas de cultivo. Por ello el estudio de un sistema modelo representa una oportunidad única para simplificar la búsqueda y el aislamiento de genes que sirvan de herramientas para mejorar la producción de semillas en plantas de interés agrícola.

Durante la última década la pequeña crucífera Arabidopsis thaliana (comúnmente llamada Arabidopsis) se ha consolidado ampliamente como el sistema modelo para estudiar los procesos genéticos que imperan en el desarrollo de las plantas. Esta especie es "prima hermana" de la mostaza, tiene un ciclo de vida corto (6 semanas), produce miles de semillas en cada individuo y sus flores



pueden ser fácilmente castradas para generar cruzas y realizar análisis genéticos. A finales de 2000 un consorcio público coordinado por laboratorios en Japón, Europa, y los Estados Unidos terminó la secuenciación de su genóma². Actualmente la casi totalidad de la secuencia genómica de Arabidopsis está disponible en bases de datos de dominio público, lo que facilita de manera sustancial la identificación de genes y el estudio de sus funciones. Con base en las secuencias disponibles, estudios preliminares muestran que la mayoría de las proteínas conocidas en Arabidopsis exhiben similitudes que permiten inferir sus funciones en numerosas plantas de cultivo.

Arabidopsis se reproduce de manera sexual y sus gametos femeninos se desarrollan siguiendo un esquema de diferenciación similar al que impera en más del 70% de las plantas con flores (figura 2). Además, muchos de los aspectos característicos de la reproducción sexual en Arabidopsis se encuentran conservados en los mecanismos de apomixis que tienen lugar en la naturaleza; estos apectos incluyen el desarrollo post-meiótico de los gametos femeninos, la formación del endospermo, la

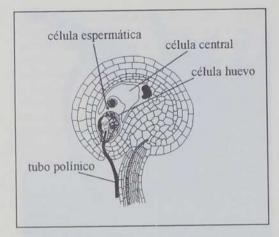



Figura 2. El óvulo y la doble fecundación. En las plantas con flores la doble fecundación se inicia cuando un grano de polen es transportado hasta la superficie del pistilo, el organo reproductivo femenino dentro del cual se desarrollan los óvulos. Dentro del óvulo se forma una estructura multicelular (el saco embrionario) que contiene las células reproductivas femeninas. Después de germinar, el grano de polen forma un tubo polínico que penetra el saco embrionario y deposita dos células reproductivas masculinas en la vecindad de los gametos femeninos. El embrión se forma después de la fusión de una célula espermática con la célula huevo. La fusión de la segunda célula espermática con una voluminosa célula central da lugar a la formación del endospermo.

embriogénesis y la diferenciación de la cubierta matema en la semilla. Aunque aún no han sido identificados mutantes que generen semillas apomícticas, existen algunas mutaciones que reflejan componentes esenciales del proceso, como el desarrollo autónomo del endospermo. Todos estos mecanismos operan en numerosas plantas sexuales durante la gametogénesis femenina y los procesos de doble fecundación, lo que indica que manipulando el sistema reproductivo de las plantas sexuales será posible alterar procesos de desarrollo que permitan la inducción de mecanismos apomícticos.

## Trampas que descubren genes

Para estudiar con detalle la vida sexual de Arabidopsis en nuestro Laboratorio de Desarrollo Reproductivo y Apomixis utilizamos una tecnología que permite identificar genes a partir de la visualización de sus esquemas de actividad (su expresión) en la planta<sup>3</sup>. Esta tecnología

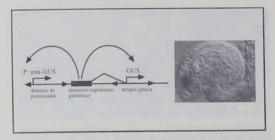



Figura 3. ¿Qué son las trampas génicas? Las trampas génicas son generalmente de dos tipos: los detectores de potenciadores y las trampas génicas sensu strícto. Los detectores de potenciadores dependen de una unidad móvil (doble flecha) que contiene un gen reportero (GUS) bajo el control de un promotor constitutivo débil (P-min). Si el promotor entra en contacto con una «ecuencia genómica reguladora (caja rectangular), la actividad del gen reportero dará lugar a un esquema de tinción cuya localización será el reflejo de aquel gen (intrinsico a la planta) que se encuentre bajo el control de dicha secuencia reguladora (veáse totografia). En el caso de las trampas génicas sensu stricto, el gen reportero no está bajo el control de un promotor débil. Este tipo de estrategias han constituido poderosas herramientas para el estudio del desarrollo del ratón, de la Drosophila y ahora de Arabidopsis.

depende de elementos móviles en el genoma (llamados transposones) que actúan como verdaderas "trampas génicas" al insertarse en el ADN y delatar la actividad de genes por medio de un marcador molecular visible en el tejido vegetal (figura 3). Originalmente diseñadas para estudiar el desarrollo de la mosca (Drosophila melanogaster), las estrategias de trampas génicas han sido instrumentadas con éxito en Arabidopsis y están siendo utilizadas para identificar, aislar y elucidar la función de una multitud de genes que actúan en diferentes procesos de desarrollo. Las trampas génicas permiten el estudio de genes difíciles de estudiar por métodos clásicos de análisis genético<sup>4</sup>. Resultan particularmente útiles para identificar genes cuya letalidad en estados de desarrollo prematuro (formación de embriones) impide la determinación de la función de dichos genes en estados de desarrollo adulto (formación de flores y gametos). El uso de trampas génicas también permite la identificación de genes cuya función es redundante, y para los cuales un mutante resulta dificil de identificar. Se considera actualmente que existe una gran cantidad de genes con funciones redundantes en las plantas, lo que impide la obtención directa de los mutantes correspondientes por medio de estrategias clásicas.



En la Unidad Irapuato del Cinvestav estamos generando una colección de líneas que contienen elementos que actúan como trampas génicas. A la fecha contamos con aproximadamente 1,000 líneas con inserciones aleatorias a todo lo largo y ancho del genoma de Arabidopsis. Las líneas contienen un gen reportero que imita el patrón de actividad del gen en el cual está insertado y que puede ser visualizado en el óvulo. Invertimos considerable tiempo en obtener métodos que nos permitieran visualizar la actividad del gen reportero en el óvulo de Arabidopsis, sin necesidad de realizar cortes histológicos del tejido reproductivo. Estas modificaciones nos permiten buscar genes en todos los estados de desarrollo del óvulo, desde sus inicios hasta las primeras divisiones del embrión después de la doble fecundación. Hemos ya identificado múltiples líneas que tienen esquemas de expresión en regiones específicas del óvulo durante la meiosis o en las células reproductivas diferenciadas. Podemos aislar y secuenciar el ADN genómico localizado a los bordes de la trampa génica de manera rutinaria, utilizando una técnica muy eficiente de amplificación de ADN denominada Thermal Assymetric Interlaced PCR" (TAIL-PCR)<sup>5</sup>. El análisis de la secuencia de estos fragmentos ha demostrado que nuestras inserciones se localizan en genes que cumplen funciones importantes en el desarrollo de plantas, incluyendo receptores de cinasas, reguladores del ciclo celular, factores de transcripción, o reguladores de la diferenciación celular. Adicionalmente, hemos determinado que durante estadios posteriores, la proporción de trampas génicas que presentan actividad en las células reproductivas femeninas es del 10 a 11%. Finalmente, hemos adaptado técnicas de hibridación in-situ que nos permiten localizar mRNA en las células reproductivas, y verificar si para los genes identificados los esquemas de expresión corresponden o no a los esquemas de actividad del gen correspondiente. Algunos de los esquemas de expresión que hemos ya identificado pueden ser utilizados para alterar el desarrollo sexual en Arabidopsis y perturbar la determinación de las celulas reproductivas. Uno de ellos se localiza en tan sólo algunas células que constituyen los precursores del desarrollo asexual en plantas que se reproducen por apomixis. Se considera que la región de expresión en esta línea juega un papel importante en la determinación del destino celular, y por lo tanto en la formación de las células haploides.

# Activación retardada: la pereza del genoma paterno

Para estados posteriores a la doble fecundación hemos identificado tres tipos de genes que actúan durante el desarrollo prematuro de la semilla: en el cigoto, en el endospermo, o en ambos tejidos en forma simultánea. Recientemente, la identificación de estos tipos de genes nos permitió establecer que numerosos genes que se heredan a través de la célula espermática se mantienen inactivos en el embrión vegetal hasta por cuatro días después de la doble fecundación. A diferencia de los mamíferos como el ratón, en los cuales tanto los genes heredados del padre como los heredados de la madre participan en la formación de proteínas inmediatamente después de la fecundación, en Arabidopsis tan sólo se activan genes a partir de las copias matemas, mientras que los genes heredados del padre se mantienen en niveles no detectables durante las primeras divisiones celulares del embrión y del endospermo<sup>6</sup>.

Lo anterior se traduce como la existencia de un retraso global en la activación del genoma paterno durante la formación de semillas. Puesto que es posible regenerar embriones a partir de células somáticas, siempre se había considerado que la contribución materna no es esencial para la formación de embriones vegetales. Este descubrimiento rompe con ese paradigma, e invita a una reconsideración general de las bases genéticas y los mecanismos moleculares que regulan la formación de semillas. Creemos que esta actividad retardada de las copias heredadas del padre contribuye también a explicar por qué ciertas plantas son capaces de formar semillas genéticamente idénticas a la planta madre, por apomixis, y esto sin alterar los procesos de desarrollo que imperan durante la embriogénesis prematura. Desconocemos actualmente los mecanismos moleculares que están en la base de ese fenómeno de silenciamiento, pero



pensamos que las características estructurales del material genético contenido dentro del núcleo espermático (la cromatina) deben jugar un papel fundamental. Al utilizar nuevas estrategias en Arabidopsis y en maíz estamos tratando de conocer los mecanismos que controlan este mecanismo de activación retardada.

El estudio del desarrollo de las células reproductivas y de la doble fecundación en Arabidopsis nos permite establecer las bases de un esfuerzo sostenido en el área de biotecnología de la reproducción vegetal. Creemos que este tipo de iniciativas producirá las herramientas necesarias para inducir de manera flexible mecanismos de reproducción que permitan la obtención de semillas mejoradas, y posteriormente intentar la inducción de semillas apomícticas en plantas de cultivo.

#### Notas

- 1. J-Ph. Vielle-Calzada, C.F. Crane, y D.M. Stelly, Science **274**, 1322 (1996).
- 2. The Arabidopsis Genome Initiative, *Nature* **408**, 796 (2000).
- 3. J-Ph. Vielle-Calzada et al., Genes & Development 13, 2971 (1999).

4. V. Sundaresan et al., Genes & Development 9, 1797 (1995).

5. Y-G. Liu et al., The Plant Journal 8, 457(1995).

6. J-Ph. Vielle-Calzada, R. Baskar, y U. Grossniklaus, Nature 404, 91 (2000).





Centro de Investigación y de Estudios Avanzados del IPN

El Departamento de



www.ls.cinvsciev.mx







Informes

Maria del Carmen Guinlero Marinez. Teletono: 57-47-38-00 ext 6500 e-mail: mauinter@mail.cinvestav.mx

Departamiento de Ingenieria Electrica. Av. IPN 2508 Colonia San Pedro Zacatenco. CP 07360 México, D

Ofrece Programas de MAESTRIA y DOCTORADO

(con opción de Doctorado Directo) en Ciencias

con la especialidad en:



BILLECTRONICA DEL



# Producción de vacunas y compuestos farmacéuticos en plantas transgénicas

Miguel A. Gómez Lim

Aunque las plantas se han utilizado por miles de años con fines medicinales, ha sido recientemente que por medio de la ingeniería genética se han utilizado como biofábricas o biorreactores para producir diversos compuestos de interés farmacéutico. Dado que la demanda por estos compuestos va en aumento en todo el mundo, el uso de esta tecnología también está cada vez más extendido. Actualmente, el alto costo de muchos compuestos farmacéuticos limita su disponibilidad y aplicación. Los producidos en plantas transgénicas son, por el contrario, baratos para producir y almacenar, de fácil escalamiento para producción en masa y más seguros que los derivados de otros sistemas. En este artículo se analiza el avance en este campo.

El uso de reactores o biorreactores para la producción a nivel industrial de determinadas sustancias no es nuevo. Gran cantidad de compuestos de diversos tipos (incluyendo farmacéuticos) se ha estado produciendo por muchos años en diversos sistemas. Esto fue posible debido a que la mayoría de los genes de cualquier origen se puede expresar en sistemas heterólogos. El sistema de expresión ideal sería el que produce el material en mayor cantidad, más seguro y biológicamente más activo con el costo más bajo. El uso de células de mamíferos modificadas con técnicas de DNA recombinante tiene la ventaja de producir compuestos idénticos a los naturales; sin embargo, cultivar estas células es muy costoso y se puede realizar solamente en escala limitada.

El uso de microorganismos, tales como bacterias, permite la producción a escala mucho mayor, pero tiene

El Dr. Miguel A. Gómez Lim es investigador titular del Departamento de Ingeniería Genética de Plantas de la Unidad Irapuato del Cinvestav.

Tabla 1. Planticuerpos terapéuticos y de diagnóstico (Ig A secretora, IgAs; peso fresco, PF; proteína soluble total, PST).

| Aplicación<br>y especificidad                                          | Promotor                                                                    | Secuencias señales                                          | Nombre o tipo<br>de anticuerpo | Planta                   | Niveles de Expresión                                      | Referencias               |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|--------------------------|-----------------------------------------------------------|---------------------------|
| Caries dental;<br>antigeno I o II<br>de S. mutants                     | CaMV 35S                                                                    | Murino IgG<br>péptido señal                                 | Guy's 13 (IgAs)                | Nicotiana<br>tabacum     | 500 μg/g PF hojas                                         | Ma <sup>7,35</sup>        |
| Diagnóstico;<br>IgG<br>anti-humano                                     | CaMV 35S                                                                    | Péptido señal<br>murino de IgG                              | C5-1 (IgG)                     | Alfalfa                  | 1.0% PST                                                  | Khoudi <sup>¢</sup>       |
| Tratamiento<br>para cáncer;<br>antígeno<br>carcinoem-<br>briónico      | Ubiquitina<br>de maiz                                                       | Péptido señal<br>murino<br>de IgG; KDEL                     | ScFvT84.66 (ScFv)              | Trigo                    | 900.0 Ng/g hojas;<br>1.5 μg/g semillas                    | Stoger <sup>3</sup>       |
| Tratamiento<br>para cáncer;<br>antigeno<br>carcinoem-<br>briónico      | Ubiquitina<br>de Maíz                                                       | Péptido señal<br>murino de IgG;<br>KDEL                     | ScFvT84.66 (ScFv)              | Arroz                    | 29.0 µg/g hojas;<br>32.0 µg/g semilias;<br>3.8 µg/g callo | Stoger <sup>3</sup> Torre |
| Tratamiento<br>para cáncer;<br>antigeno<br>carcinoem-<br>briónico      | Doble<br>promotor<br>CaMV 35\$                                              | Péptido señal<br>murino de IgG;<br>KDEL                     | SCFVT84.66 (SCFV)              | Arroz                    | 27.0 μg/g hojas                                           | Stoger <sup>3</sup>       |
| Tratamiento<br>para cáncer;<br>antigeno<br>carcinoem-<br>briónico      | Doble<br>promotor<br>CaMV 35S                                               | Líder Ω del TMV;<br>Péptido señal<br>mutino de IgG;<br>KDEL | T84.66 (IgG)                   | Nicotiana<br>tabacum     | 1.0 μg/g hojas                                            | Vaquero*                  |
| Tratamiento<br>para linfoma<br>de células B;<br>vacuna de<br>idiotipos | Promotor<br>subgenómico<br>de la proteína<br>de la cápside<br>del TMV       | α-amiliasa de arroz                                         | 38C13 (scFv)                   | Nicotlana<br>benthamiana | 30.0 µg/g hojas                                           | McCormick <sup>3</sup>    |
| Cáncer de<br>colon; antigeno<br>de superficie                          | Promotor<br>subgenómico<br>U5 de la<br>proteina<br>de la cápside<br>del TMV | Péptido señal<br>murino de IgG;<br>KDEL                     | CO17-1A (IgG)                  | Nicotlana<br>benthamiana | No registrado                                             | Verch <sup>37</sup>       |
| Herpes simplex virus 2                                                 | CaMV 35S                                                                    | Péptido señal de extensina de tabaco                        | Anti-HSV-2 (IgG)               | Soya                     | No registrado                                             | Zeitlin <sup>5</sup>      |



la desventaja de originar productos que no son exactamente iguales a los de origen natural. Por ejemplo, las proteínas que generalmente son glucosiladas (diversos azúcares unidos a la molécula) en seres humanos no son glucosiladas por bacterias. Además, las proteínas humanas que se expresan en altos niveles en Escherichia coli adquieren con frecuencia una conformación artificial y son más propensas a precipitar en forma intracelular debido principalmente a la carencia de puentes disulfuro y a un plegamiento inadecuado.

La producción de proteínas recombinantes en plantas tiene muchas ventajas potenciales para generar compuestos farmacéuticos de importancia en medicina clínica. En primer lugar, los sistemas vegetales son más económicos que la infraestructura industrial utilizada en sistemas de fermentación o en biorreactores. En segundo lugar, ya está disponible la tecnología para cosechar y

procesar plantas v sus productos a escala industrial. En tercer lugar, el requisito de la purificación del compuesto puede ser eliminado cuando el tejido de la planta que contiene la proteína recombinante se utiliza como alimento (como en el caso de las vacunas comestibles, veáse más adelante). En cuarto lugar, se puede dirigir a las proteínas recombinantes a determinados compartimientos intracelulares, o expresarlos directamente en esos compartimientos (como por ejemplo el cloroplasto). En quinto lugar, se puede producir la proteína recombinante en plantas a escala industrial. Finalmente, los riesgos a la salud que se presentan por posible contaminación del producto recombinante con patógenos humanos son mínimos. Hay dos áreas en donde esta tecnología está teniendo un impacto importante: en la producción de anticuerpos y sus receptores y en la producción de vacunas comestibles.

# Anticuerpos en plantas transgénicas

Desde hace más de diez años, las plantas han demostrado ser sistemas versátiles de producción para muchas formas de anticuerpos como IgG e IgA, IgG/IgA quiméricos y otros. Las plantas tienen un gran potencial como fuente virtualmente ilimitada de anticuerpos monoclonales baratos (llamados "planticuerpos") para terapia humana y animal (tabla 1).

La mayoría de los anticuerpos expresados hasta la fecha han sido en tabaco, aunque también se han utilizado papa, soya, alfalfa, arroz y trigo<sup>1,2</sup>. La ventaja principal de usar hojas (como en tabaco y alfalfa) para producir el anticuerpo es su rendimiento. Tanto la alfalfa como el tabaco pueden ser cosechados varias veces al año, con una producción potencial de biomasa por año de 17 toneladas/ha y mayor que 50 toneladas/ha, respectivamente. En contraste, la producción máxima de trigo, arroz o maíz difícilmente rebasa las 6 toneladas/ha. Otras ventajas del tabaco incluyen su facilidad para la manipulación genética, la producción de un gran número de semillas (hasta un millón por planta) y la imperiosa necesidad de explorar otros usos para este cultivo.

Los anticuerpos producidos en plantas son bastante estables tanto a temperatura ambiente<sup>3,1</sup> como a 4°C. El material vegetal que contiene al anticuerpo se puede

Tabla 2. Proteínas con aplicaciones para vacunas humanas o animales expresadas en plantas transgénicas.

| Origen de la<br>proteina y especie<br>blanco para la<br>vacuna         | Proteína or<br>péptido<br>expresado              | Planta                 | Nivel máximo<br>de expresión<br>registrado en<br>la planta | Integridad, inmunogenicidad<br>y capacidad protectora<br>de la vacuna                                                                          | Referencias                                                     |
|------------------------------------------------------------------------|--------------------------------------------------|------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| E. coll enterotoxi-<br>génica<br>(para humano)                         | Subunidad B<br>de la toxina<br>sensible al calor | Tabaco                 | <0.01% PTS°                                                | La proteína intacta forma<br>multimeros y es inmunogénica<br>por administración oral                                                           | Haq!1                                                           |
| E. coli enterotoxi-<br>génica<br>(para humano)                         | Subunidad B<br>de la toxina<br>sensible al calor | Papa                   | 0.19% PTS                                                  | Actividad inmunogénica,<br>protectora y de unión al<br>receptor por administración oral                                                        | Haq <sup>11</sup> , Mason <sup>38</sup><br>Tacket <sup>23</sup> |
| E. coll enteratoxi-<br>génica<br>(para humano)                         | Subunidad B<br>de la toxina<br>sensible al calor | Maíz                   | No registrado                                              | Inmunogénica y protectora<br>por administración oral                                                                                           | Streatfield <sup>22</sup>                                       |
| Vibrio cholerae<br>(para humano)                                       | Subunidad B<br>de la toxina<br>sensible al calor | Papa                   | 0.30% PTS                                                  | La proteína intacta forma<br>multimeiros, flene actividad<br>de unión al receptor y es<br>inmunogénica y protectora<br>por administración oral | Arakawa <sup>26</sup>                                           |
| Virus de la<br>hepatitis B<br>(para humano)                            | Proteina superficial<br>de la cubierta           | Tabaco                 | <0.01% PTS                                                 | Forma partículas tipo virus y<br>la proteína extraida es<br>inmunogénica por<br>administración por Inyección                                   | Mason <sup>12</sup> ,<br>Thanavala <sup>18</sup>                |
| Virus de la hepatitis B<br>(para humano)                               | Proteina superficial<br>de la cubierta           | Papa                   | <0.01% PF <sup>b</sup>                                     | Inmunogénica por<br>administración oral                                                                                                        | Richter <sup>25</sup>                                           |
| Virus de la hepatitis B<br>(para humano)                               | Proteina superficial<br>de la cubierta           | Lupino<br>(Lupinus spp | <0.01% PF                                                  | Inmunogénica por<br>administración oral                                                                                                        | Kapusta <sup>21</sup>                                           |
| Virus de la hepatitis B<br>(para humano)                               | Proteína superficial<br>de la cubierta           | Lechuga                | <0.01% PF                                                  | Inmunogénica por administración oral                                                                                                           | Kapusta <sup>21</sup>                                           |
| Virus de Norwalk<br>(para humano)                                      | Proteína de<br>la cápside                        | Tabaco                 | 0.23% PTS                                                  | Forma partículas tipo virus;<br>Inmunogénica por administración ora                                                                            | Mason <sup>12</sup>                                             |
| Virus de Norwalk<br>(para humano)                                      | Proteína<br>de la cápside                        | Papa                   | 0.37% PTS                                                  | Forma partículas tipo virus, inmuno-<br>génica por administración oral                                                                         | Mason <sup>12</sup> ,<br>Tacket <sup>23</sup>                   |
| Virus de la rabia<br>(para humano)                                     | Glicoproteina                                    | Tomate                 | 1.00% PTS                                                  | Proteína intacta                                                                                                                               | McGarvey <sup>13</sup>                                          |
| Citomegalovirus<br>humano (para humano)                                | Glicoproteína B                                  | Tabaco                 | <0.02% PTS                                                 | Proteina inmunológicamente relacionada                                                                                                         | Tackaberry <sup>27</sup>                                        |
| Virus hemorrágico<br>de conejos<br>(para conejos)                      | VP60                                             | Papa                   | 0.30% PTS                                                  | Inmunogénica y protectora<br>por administración por inyección                                                                                  | Castanon <sup>26</sup>                                          |
| Virus de fiebre<br>affosa (para<br>animales de granja<br>y domésticos) | VP1                                              | Arabidopsis            | No registrado                                              | Inmunogénica y protectora<br>por administración por inyección                                                                                  | Carrillo <sup>16</sup>                                          |

Tabla 2. Proteínas con aplicaciones para vacunas humanas o animales expresadas en plantas transgénicas (continuación).

| Origen de la<br>proteina y especie<br>blanco para la<br>vacuna         | Proteina o<br>péptido<br>expresado | Planta      | Nivel máximo<br>de expresión<br>registrado en<br>la planta | Integridad, inmunogenicidad<br>y capacidad protectora<br>de la vacuna           | Referencias               |
|------------------------------------------------------------------------|------------------------------------|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|
| Virus de fiebre<br>aftosa<br>(para animales de<br>granja y domésticos) | VP1                                | Alfalfa     | No registrado                                              | Inmunogénica y protectora por<br>administración por inyección<br>o por vía oral | Wigdorovitz <sup>19</sup> |
| Coronavirus<br>ransmisible de la<br>gastroenteritis<br>para cerdos)    | Glicoproteína s                    | Arabidopsis | 0.06% PTS                                                  | Inmunogénica y protectora por administración por inyección                      | Górnez <sup>17</sup>      |
| Coronavirus<br>ransmisible de la<br>gastroenteritis<br>para cerdos)    | Glicoproteina \$                   | Tabaco      | 0.20% PTS                                                  | Proteína intacta e inmunogénica<br>por administración por inyección             | Tuboly <sup>24</sup>      |
| Coronavirus<br>ransmisible de la<br>gastroenteritis<br>para cerdos)    | Glicoprateina \$                   | Maiz        | <0.01% PF                                                  | Protectora por administración<br>por vía oral                                   | Streatfield <sup>22</sup> |

almacenar y la purificación se puede realizar en una planta de procesamiento que no necesita estar cerca del lugar en donde están las plantas y se puede utilizar todo el año. Hay muchos ejemplos de anticuerpos y sus receptores producidos exitosamente en plantas (tabla 1), aunque sólo uno de éstos se ha probado en seres humanos: un anticuerpo secretor quimérico de IgG/IgA contra un antígeno superficial de Streptococcus mutans, el agente causal de la caries dental. Este anticuerpo producido en tabaco fue aplicado tópicamente a los dientes de varios voluntarios y se encontró que era tan eficaz como un IgG producido en un hibridoma de ratón para prevenir la recolonización de las encías por S. mutans4. Para dar otro ejemplo, un anticuerpo contra el virus del herpes (HSV) fue producido en soya y fue muy eficaz en la prevención de la infección vaginal por HSV en ratón5.

Un aspecto importante que se ha destacado de la producción de anticuerpos en plantas es el potencial bajo costo de producción. Hay pocos estudios de costos y por eso las estimaciones disponibles implican muchas suposiciones. El costo de producir IgG en alfalfa crecida en un invernadero de 250 m² se estimó en 500-600

dólares/g, comparados con 5000 dólares/g para el mismo anticuerpo pero producido por hibridomas (células cancerosas en cultivo in vitro)6. Es indudable que los niveles de expresión tendrán un impacto significativo en los costos, por ello en el nivel de expresión más alto registrado para un anticuerpo4 (500 μg/g de hoja para una IgA secretada7), el costo final se estimó muy por debajo de 50 dólares/g. Esto contrasta ostensiblemente con los costos de anticuerpo purificado obtenido por cultivo de células (1000 dólares/g) o a partir de animales transgénicos (100 dólares/g). El componente más importante del costo de los planticuerpos será la purificación. La expresión en gérmenes de arroz y trigo3 abre la posibilidad de administración oral de algunos anticuerpos terapéuticos sin necesidad de purificación. Sin embargo, a pesar de todas estas ventajas, aún no se produce ningún anticuerpo en plantas en forma comercial.

Muchos anticuerpos son sujetos a un proceso posttraduccional de glucosilación, que es crítico para su actividad. Sólo hay un estudio publicado en donde se analiza la glucosilación de un anticuerpo producido en plantas con el producido en hibridomas de ratón<sup>8</sup>. Se encontró que los azúcares en el anticuerpo derivado de plantas eran estructuralmente más diversos, siendo el 40% del tipo manosa. El otro 60% tenía enlaces tipo B-(1,2)-xilosa y B-(1,3)-fucosa. Estos enlaces son típicos de plantas pero no se encuentran en mamíferos. El ácido siálico, que representaba el  $\sim$ 10% del contenido de azúcar del anticuerpo monoclonal de ratón, no se encontró en el anticuerpo de plantas. Sin embargo, estas diferencias en estructura parecen no tener ningún efecto sobre la unión al antígeno o sobre la afinidad *in vitro*5-7-9 y pudieran, igualmente, no ser importantes *in vivo*. Un IgG producido en alfalfa tuvo una vida media en suero en ratones Balb/c similar a la de un anticuerpo producido en hibridomas<sup>6</sup>.

Aunque existe una cierta preocupación por la inmunogenicidad potencial y la capacidad alergénica de los planticuerpos, es probable que éstos no presenten problemas para la mayoría de la gente porque las glucoproteínas de plantas son ubicuas en la dieta humana. En este sentido, no hubo evidencia de reacción alérgica a un anticuerpo humano anti-ratón (HAMA) en 60 pacientes que recibieron la aplicación oral tópica de IgA secretora específica para S. mutans<sup>4</sup>.

#### Vacunas comestibles

La producción de diversos antígenos en plantas transgénicas es un hecho demostrado desde hace años¹º. El interés para hacer estos experimentos fue que determinadas proteínas inmunogénicas clave del patógeno se podrían sintetizar en plantas y después usar el tejido vegetal como vacunas comestibles en seres humanos o en animales. Se ha demostrado que esta idea es totalmente viable usando diversas proteínas bacterianas y virales (tabla 2).

Actualmente, la vacunación en gran escala enfrenta una serie de dificultades: por un lado los altos costos de las vacunas y por el otro el riesgo de que la distribución en lugares remotos y de difícil acceso no sea adecuada. La mayoría de las vacunas disponibles se aplican por vía parenteral (inyecciones). La Organización Mundial de la Salud ha recomendado en diversas ocasiones buscar alternativas para sustituir a las inyecciones, debido a que se ha encontrado en algunos países que hasta un 30% de las inyecciones se realizan con jeringas no estériles.



Considerando el grave problema del SIDA, este hecho es de gran relevancia. La aplicación de vacunas vía oral es una muy buena alternativa para las vacunas vía parenteral, en gran parte por razones de bajo costo y fácil administración. Asimismo, con las vacunas orales se incrementa la probabilidad de adquirir inmunidad en mucosas contra los agentes infecciosos que entran al cuerpo a través de una superficie mucosal.

Una preocupación importante con las vacunas orales es la degradación de los antígenos en el estómago e intestino antes de que puedan inducir una respuesta inmune. Para protegerlos de la degradación se han desarrollado varios métodos. Entre éstos se encuentran el uso de cepas recombinantes de microorganismos atenuados (v. gr. Salmonella), de vehículos de bioencapsulación, tales como liposomas, y finalmente las plantas transgénicas. En los primeros trabajos con vacunas derivadas de plantas se utilizaron el tabaco y la papa<sup>11-13</sup>. En teoría, la especie ideal para expresar los antígenos debería consumirse en fresco y tener altos niveles de proteína soluble; en este sentido, frutos como el plátano

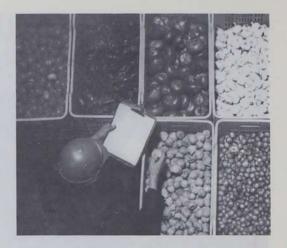


y el jitomate o, alternativamente, los cereales, son sistemas convenientes para este fin.

Algunos ejemplos que ilustran la variedad de antígenos expresados en plantas transgénicas se dan en la tabla 2. Los antígenos derivados de plantas han inducido respuestas inmunes a nivel de mucosas y de suero cuando han sido administrados tanto con inyecciones como por vía oral en animales de laboratorio y, en varios experimentos, los han protegido contra el patógeno 11,14,19. De la misma manera, se han realizado exitosamente varias pruebas clínicas con voluntarios humanos en las cuales los antígenos consumidos por vía oral en tejido vegetal fueron capaces de inducir una respuesta inmune significativa 20,24.

Por esta razón se considera que las vacunas preparadas en plantas tienen un gran potencial. La bioencapsulación de la subunidad B de la toxina lábil de *Escherichia coli* en maíz transgénico indujo una fuerte respuesta inmune en ratones, en comparación con la alcanzada con el antígeno desnudo que fue más débil<sup>22</sup>. Probablemente, esto se debió a que el antígeno estaba protegido contra la degradación en el intestino.

La cantidad de tejido vegetal que constituya una dosis de vacuna debe ser pequeña. Por ello, es muy importante alcanzar altos niveles de expresión del antígeno en el tejido vegetal. Se han utilizado diferentes estrategias para aumentar los niveles de expresión de los transgenes; por


ejemplo, utilizando diversas señales de regulación de la expresión genética<sup>25</sup>, así como optimizando el uso del codones 14,22,24. Los niveles de expresión se podrían también elevar a través de cruzas de líneas transformadas con líneas establecidas y bien caracterizadas, estrategia que se ha aplicado con éxito para aumentar la producción de proteína total en maíz. Es también importante que cualquier antígeno esté presente en su forma nativa en el tejido vegetal. Esto normalmente se evalúa examinando el tamaño de la proteína sintetizada, su capacidad de formar las estructuras adecuadas (por ejemplo, partículas tipo virus) y, cuando sea relevante, su actividad enzimática o de unión a un receptor 11,13,14,19,24,26. La estabilidad de las proteínas heterólogas y el ensamblaje de estructuras multiméricas dependen en buena medida de la localización subcelular. Hasta ahora, los principales lugares en donde se han expresado antígenos son la superficie celular, el retículo endoplásmico y el aparato de Golgi<sup>11,24-27</sup>. Estos sitios han permitido la producción de antígenos funcionales; sin embargo, hay sugerencias para probar otros compartimientos celulares, como por ejemplo el cloroplasto.

Una estrategia relacionada con la de vacunas comestibles utiliza a plantas transgénicas que expresan autoantígenos, por lo que una dosis oral de un autoantígeno puede inhibir el desarrollo de una enfermedad autoinmune a través del mecanismo de tolerancia. Este enfoque ha sido utilizado exitosamente en un modelo de diabetes en ratón<sup>4</sup>.

Actualmente en nuestro laboratorio de la Unidad Irapuato se trabaja en la producción de plantas transgénicas, principalmente de plátano y jitomate, que contengan diversos antígenos con la idea de generar vacunas comestibles. Los antígenos con los que se trabaja van desde diversos epítopos de Plasmodium falciparum, hasta antígenos de rotavirus, hepatitis B, HIV-SIDA v algunos antígenos de cáncer. Sin embargo, a diferencia de otros grupos que también trabajan en esta área, en el laboratorio se intenta inducir una respuesta inmune de tipo celular; específicamente, se utilizan como coadyuvantes moléculas de citocinas y quimiocinas que induzcan de preferencia interferón y. Esta estrategia ya ha sido utilizada anteriormente<sup>28-30</sup>, aunque no con plantas ni por vía oral, sino por vía parenteral. De esta manera, nosotros esperamos no solamente inducir una respuesta inmune, sino que gueremos influir en el tipo de respuesta. En los trabajos publicados, por lo regular se ha inducido una respuesta inmune de tipo hormonal, que no siempre es la más efectiva contra infecciones parasitarias o virales. Nosotros intentamos generar la respuesta adecuada para este tipo de infecciones.

## Niveles de expresión de compuestos biofarmacéuticos

En general, los niveles de expresión de las proteínas con aplicación farmacéutica producidas en plantas transgénicas han sido menor al 1% de la proteína soluble total (tabla 3). Este límite del 1% es muy importante para una posible aplicación comercial, si es que la proteína se debe purificar31. El antígeno de superficie del virus de la hepatitis-B indujo solamente una respuesta de bajo nivel en anticuerpos séricos en un estudio en voluntarios humanos, lo que refleja probablemente el bajo nivel de la expresión (1-5 ng/g de peso fresco) en lechuga transgénica21. A pesar de mejoras recientes en niveles de expresión en papa con vistas a ensayos clínicos25, los niveles de expresión se deben aumentar aún más para propósitos prácticos. Aunque la proteína de la cápside del virus Norwalk expresada en papa indujo inmunización cuando se consumió por vía oral, los niveles de la expresión son demasiado bajos para la administración oral en gran escala (0.37% de proteína soluble total14.24). La expresión de los genes que codificaban para otras proteínas humanas en plantas transgénicas ha sido muy baja: albúmina humana del suero, 0.020% PTS; proteína



humana C, 0,001% PTS; eritropoietina  $\sim$ 0.003% PTS; e interferon humano- $\beta$ , <0,001% PTS (tabla 2). A pesar de varios reportes sobre altos niveles de expresión, hay una necesidad imperiosa de encontrar mecanismos para aumentar los niveles de la expresión de las proteínas heterólogas para permitir su producción comercial en plantas.

## Perspectivas

Antes de cualquier aplicación en gran escala, los compuestos farmacéuticos derivados de plantas deberán cumplir con los mismos estándares de seguridad y funcionamiento que son requeridos en otros sistemas de producción. Sin embargo, muchas medicinas tradicionales están ahora exentas de tal escrutinio y no se les exige cumplir con esos estándares debido a su clasificación como suplementos alimenticios. Debido a las diversas preocupaciones sobre organismos genéticamente manipulados que han sido expresadas por grupos ecologistas que confunden a la opinión pública, es de la mayor importancia que existan normas para regular a este tipo de organismos. Es importante distinguir entre las preocupaciones públicas verdaderas y las percibidas (científicas contra no-científicas). Si los compuestos farmacéuticos derivados de plantas son potencialmente dañinos, capaces de persistir en el ambiente y se pueden acumular en organismos no-blanco, entonces deben tomarse las medidas adecuadas.

Tabla 3. Producción de proteínas de importancia en la salud humana producidas en plantas transgénicas.

| Aplicación o indicación potencial                           | Planta                         | Proteina                                                           | Niveles de expression          | Referencias            |
|-------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------|--------------------------------|------------------------|
| Proteínas Humanas                                           | MAL APPL                       | A Lindson                                                          |                                |                        |
| Anticoagulante                                              | Tabaco                         | Profeina C Humana                                                  | <0.01% PTS <sup>o</sup>        | Cramer <sup>38</sup>   |
| Inhibidor de trombina                                       | Canola<br>(Brasslea napus)     | Hirudina humana                                                    | 0.30% proteína de las semillas | Cramer <sup>38</sup>   |
| Neutropenia                                                 | Tabaco                         | Factor GM-CS<br>humano                                             | No registrado                  | Giddings <sup>39</sup> |
| Hormona de crecimiento                                      | Tabaco                         | Somatotropina                                                      | 7.00% PTS                      | Staub <sup>40</sup>    |
| Hormona de crecimiento                                      | Tabaco                         | Expresión nuclear                                                  | <0.01% PTS                     | Staub <sup>40</sup>    |
| Anemia                                                      | Tabaco                         | Eritropoletina<br>humana                                           | <0.01% PTS                     | Kusnadi <sup>ai</sup>  |
| Antihiperanalgésico                                         | Arabidopsis                    | Encefalina humana                                                  | 0.10% proteína de las semillas | Kusnadi <sup>31</sup>  |
| Reparación de heridas<br>y control de proliferación celular | Tabaco                         | Factor de crecimiento epidérmico humano                            | <0.01% PTS                     | Cramer <sup>38</sup>   |
| Tratamiento para la hepatitis C y B                         | Arroz, Nabo<br>(Brassica rapa) | Interferón-ß humano                                                | No registrado                  | Crarner <sup>38</sup>  |
| Tratamiento para la hepatitis C y B                         | Tabaco                         | Interferón-β humano                                                | <0.01% peso fresco             | Kusnadi <sup>31</sup>  |
| Cirrosis hepatica,<br>Quemaduras, cirugia                   | Tabaco                         | Sero albúmina<br>humana                                            | 0.02% PTS                      | Kusnadi <sup>a</sup>   |
| Sustituto de la sangre                                      | Tabaco                         | Hemoglobina<br>α,β humana                                          | 0.05% proteina de las semillas | Cramer <sup>38</sup>   |
| Colágena                                                    | Tabaco                         | Colágena<br>homotrimérica<br>humahna                               | <0.01% peso fresco             | Rugglero <sup>41</sup> |
| Fibrosis quistica, enfermedades<br>hepaticas y hemorragia   | Arroz                          | α-1-antitripsina<br>humana                                         | No registrado                  | Giddings <sup>39</sup> |
| Inhibidor de tripsina para cirugia<br>de trasplantes        | Maiz                           | Aprotinina humana                                                  | No registrado                  | Giddings <sup>39</sup> |
| Antimicrobiano                                              | Papa                           | Lactoferrina humana                                                | 0.10% PTS                      | Chong <sup>42</sup>    |
| Proteínas no humanas                                        |                                |                                                                    |                                |                        |
| Hipertensión                                                | Tabaco, tornate                | Enzima convertidora<br>de angiotensina                             | No registrado                  | Glddings <sup>30</sup> |
| Terapias HIV-SIDA                                           | Nicotiana<br>bethamiana        | α- Tricosantina de<br>TMV-U1 Proteína de la<br>cápside subgenómica | 2.00% PTS                      | Giddings <sup>39</sup> |
| Enfermedad de Gaucher                                       | Tabaco                         | Glucocerebrosidasa                                                 | 1.00-10.00% PTS                | Cramer <sup>36</sup>   |

Un tópico de discusión muy importante ha sido la dispersión del polen transgénico a hierbas o a especies relacionadas<sup>32</sup>. Actualmente se están investigando varios métodos para contener a los transgenes, incluyendo apomixis, genomas incompatibles, control de la latencia del germen, genes suicidas, barreras de infertilidad, esterilidad masculina y herencia materna. En el caso de México, al trabajar en plátano se reducen los posibles riesgos dado que el plátano es una especie estéril que no produce polen; además, como el plátano es originario de Asia, no tiene parientes cercanos en México.

Hay también preocupación por la expresión de determinadas proteínas en polen transgénico. Por ejemplo, la observación del efecto tóxico del polen de maíz transgénico conteniendo la proteína cristal de Bacillus thuringiensis (Bt) en las larvas de la mariposa monarca tuvieron un impacto significativo en la opinión pública, aunque la validez de este estudio se ha cuestionado en varias ocasiones y los mismos autores hayan establecido que los resultados no son confiables. Otra preocupación pública es la presencia de genes de resistencia a antibióticos o sus productos (que se utilizan como marcadores de selección) en partes comestibles de cultivos genéticamente modificados. Sin embargo, existen ahora varias alternativas para generar plantas con transgenes en sus núcleos33 o en los cloroplastos34 sin el uso de antibióticos.

Por todo lo anterior, queda claro el enorme potencial que tiene esta tecnología para producir compuestos de interés farmacéutico y vacunas. Para seleccionar el cultivo adecuado para la producción será necesario considerar diversos factores como niveles de producción, condiciones de almacenamiento, costos de establecimiento y operación, estrategias de purificación, tamaño del mercado, preocupaciones ambientales, opinión pública y tecnologías alternativas.

## Notas

- 1. O. Artsaenko et al., Mol. Breed. 4, 313 (1998).
- 2. E. Torres et al., Transgenic Res. 8, 441 (1999).
- 3. E. Stoger et al., Plant Mol. Biol. 42, 583 (2000).
- 4. S-W. Ma et al., Nat. Med. 3, 793 (1997).

- 5. L. Zeitlin et al., Nat. Biotechnol. 16, 1361(1998).
- 6. H. Khoudi et al., Biotechnol. Bioeng. 64, 135 (1999).
- 7. J.K. Ma et al., Science 268, 716 (1995).
- 8. M. Cabanes-Macheteau et al., Glycobiology 9, 365 (1999).
- C. Vaquero et al., Proc. Natl. Acad. Sci. U.S.A. 96, 11128 (1999).
- T.S. Mor, M.A. Gómez-Lim y K.E. Palmer, Trends in Microbiology 6, 449 (1998).
- 11. T.A. Haq et al., Science 268, 714 (1995).
- H.S. Mason et al., Proc. Natl. Acad. Sci. U.S.A. 89, 11745 (1992).
- 13. P.B. McGarvey et al., Biotechnology 13, 1484 (1995).
- H.S. Mason et al., Proc. Natl. Acad. Sci. U.S.A. 93, 5335 (1996); Vaccine 16, 1336 (1998).
- 15. T. Arakawa et al., Nat. Biotechnol. 16, 292 (1998).
- 16. C. Carrillo et al., J. Virol. 72, 1688 (1998).
- 17. N. Gómez et al., Virology 249, 352 (1998).
- Y. Thanavala et al., Proc. Natl. Acad. Sci. U.S.A.
   3358 (1995).
- 19. A. Wigdorovitz et al., Virology 255, 347 (1999).
- 20. S. Castanon et al., J. Virol. 73, 4452 (1999).
- 21. J. Kapusta et al., FASEB J. 13, 1796 (1999).
- 22. S.J. Streatfield et al., Vaccine 19, 2742 (2000).
- C.O. Tacket et al., Nat. Med. 4, 607 (1998); J. Infect. Dis. 182, 302 (2000).
- 24. T. Tuboly et al., Vaccine 18, 2023 (2000).
- 25. L.J. Richter et al., Nat. Biotechnol. 18, 1167 (2001).
- 26. T. Arakawa et al., Transgenic Res. 6, 403 (1997).

27. E.S. Tackaberry et al., Vaccine 17, 3020 (1999).

28. L.C.C. Alonso et al., Science 263, 235 (1994).

29. Y. Noguchi et al., Proc. Natl. Acad. Sci. U.S.A 92, 2219 (1995).

30. P.N. Bokaya et al., J. Immunol. 162, 122 (1999).

31. A. Kusnadi et al., Biotechnol. Bioeng. 56, 473 (1997).

32. H. Daniell, Trends Plant Sci. 4, 467 (1999).

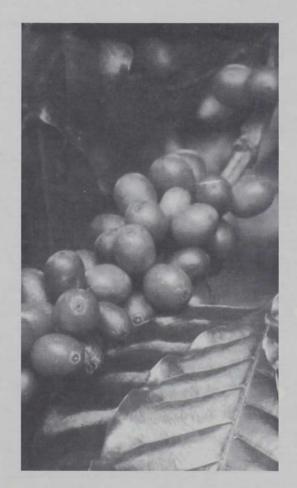
33. H. Puchta, Trends Plant Sci. 5, 273 (2000).

34. H. Daniell et al., Curr. Genet. (en prensa).

35. J. Ma et al., Nat. Med. 4, 601 (1998).

36. McCormick et al., ibid (1999).

37. T. Verch et al., J. Immunol. Meth. 220, 69 (1998).


38. C. Cramer et al., Curr. Top. Microbiol. Immunol. **240**, 95 (1999)

39. G. Giddings et al., Nat. biotechnol. 18, 1161 (2000)

40. J.M. Staub et al., Nat. Biotechnol. 18, 333 (2000)

41. F. Ruggiero et al., FEBS Letl. 469, 132 (2000)

42. D.K.X. Chong et al., Transgenic Res. 9, 71 (2000)



# 3er Taller de Química

Cinvestav

## "Jóvenes en la Investigación"

Del 7 al 9 de noviembre del 2001

Este taller tiene por objetivo que los jóvenes que realizan investigación en química (tesistas de licenciatura, maestría y doctorado) se conozcan, discutan y presenten los resultados recientes de su trabajo en una exposición oral de 15 minutos.

Si deseas participar, envía un resumen de tu presentación según formato incluído en:

## http://www.cinvestav.mx/quimica

Costo 300 pesos (incluye comidas y memoria del taller). La fecha límite de recepción de trabajos es el 7 de septiembre y la aceptación se comunicará vía correo electrónico a partir del 1º de octubre de 2001. (Cupo limitado)



Dre Angelina Flores, ailores@mail.cinvestav.mx. 57475720; Dr. Felipe González, Igonzále@mail.cinvestav.mx. 57475717; fax: 57477113

> Departamento de Química del Cinvestas A. IPN 2508, C.P. 07360, Mexico, D.F.

## Alcamidas en plantas: distribución e importancia

Jorge Molina Torres y Abraham García Chávez

## Introducción

La condensación química de un ácido con una amina resulta en la formación de una amida. El grupo funcional amida es ubicuo; se encuentra en todos los organismos vivos constituyendo las uniones peptídicas, esto es, en la unión entre los aminoácidos para la formación de la estructura primaria de las proteínas, base funcional de la vida como la conocemos hasta ahora<sup>1</sup>.

Las amidas como productos naturales, por otra parte, no son tan abundantes. Un ejemplo interesante de este grupo de compuestos es el de las alquilamidas o alcamidas que comprenden un grupo de aproximadamente 70 estructuras conocidas y distribuidas a lo largo del reino vegetal. Desde el punto de vista biogénico, las alcamidas representan una clase distinta de productos naturales que se forma al combinar dos diferentes rutas metabólicas. Están constituidas por la unión de un ácido graso, de longitud de cadena de mediana a larga que puede ser de ocho a dieciocho carbonos generalmente alifática o lineal, unida a una amina proveniente de algún aminoácido por descarboxilación al momento de condensación. Dependiendo del número de enlaces o ligaduras dobles que presenten, las alcamidas se han dividido en dos grupos principales: alcamidas olefínicas, que tienen sólo dobles ligaduras, y alcamidas acetilénicas, con al menos una triple ligadura2, y las que presentan anillos homo o heterocíclicos que se observan principalmente en la familia Piperaceae<sup>3</sup>. Las alcamidas alifáticas son las más importantes para el metabolismo secundario y de aquellas

Dirección electrónica: jmolina@ira.cinvestav.mx

El Dr. Jorge Molina Torres es investigador titular del Departamento de Biotecnología y Bioquímica de la Unidad Irapuato del Cinvestav. Abraham García Chávez es estudiante de doctorado del mismo departamento.



utilizadas mayoritariamente por el hombre. Las alcamidas son consideradas como compuestos bioactivos, esto es, una pequeña cantidad de estos compuestos presenta una respuesta notable en las células receptoras. Se manifiestan en unos cuantos grupos de plantas, de los cuales los más importantes están presentes en las familias Asteraceae (anteriormente Compuestas), y Solanaceae (familia de las papa), más específicamente en las especies de Capsicum (chiles) y en la familia Piperaceae (familia de la pimienta). Cada una de ellas tiene características individuales pero es interesante que sus moléculas bioactivas presentan estructuras químicas relacionadas. Las alcamidas alifáticas han demostrado su eficacia como compuestos medicinales, saborizantes e incluso en control biológico, por lo que son un grupo de metabolitos de gran interés actual.

Para ilustrar lo anterior describiremos brevemente algunos ejemplos que a nuestro juicio son los más importantes de especies productoras de alcamidas. Se hará énfasis en la situación actual de dichas especies así como su capacidad de producción de alcamidas y en algunos avances que hemos obtenido en el Laboratorio de Fitobioquímica de la Unidad Irapuato del Cinvestav sobre el conocimiento de estos compuestos.

## Heliopsis longipes

Como chilcuague se conoce a las raíces de la planta cuyo nombre botánico es *Heliopsis longipes*. Es un recurso de uso medicinal y culinario en Guanajuato. En la medicina popular se utiliza como analgésico y anestésico local y como antibiótico para infecciones de los aparatos respiratorio y digestivo. También se utiliza para condimentar salsa, frijoles, nopales y otros platillos de la región. Esta planta acumula una gran cantidad de alcamidas olefínicas en las raíces, crece en forma silvestre y también se cultiva de manera rudimentaria.

Esta especie tiene una larga tradición en la herbolaria indígena que se puede apreciar por su nombre de origen náhuatl: chilmecatl (de chili, chile y mecatl, mecate, aludiendo a las raíces filiformes y al sabor picante de éstas) y chilcuague o chilcuán (chile de víbora). Esta especie fue la primera donde se caracterizó la presencia de una alcamida olefínica. Se estudiaron raíces de especímenes colectados en México, pero no se incluyeron partes aéreas. Por error se consideró que se trataba de Erigeon affinis, por lo que la amida fue denominada afinina. Más tarde se aclaró esta confusión, pero el nombre de la amida ya se había aceptado. La afinina es la alcamida responsable de los principales efectos biológicos

observados en esta raíz, entre los que se pueden considerar la actividad anestésica local, saborizante, insecticida y bactericida<sup>4</sup>.

Para conocer las aplicaciones como saborizante del chilcuague es necesario recurrir a la zona de cultivo, esto es, a los municipios y poblados vecinos a la Sierra Gorda en el norte del estado de Guanajuato. Las principales comunidades consumidoras son: Xichú, Victoria, Doctor Mora y San Luis de la Paz. En estas poblaciones se encuentran las raíces de chilcuague frescas, en manojos de poco más de 50g. Se localizan en los puestos de venta de verduras. En la cocina se utiliza en la preparación de salsa picante acompañando al chile, donde lo complementa y resalta su sabor. En las cantinas de la región es frecuente encontrar que se agregan unas "varitas" de las raíces de chilcuague al aguardiente para hacer más suave su paso por la garganta<sup>5</sup> dándole, según la opinión de gente local, la calidad del cognac.

Otras actividades biológicas que se han atribuido al chilcuague son: actividad antiviral, en el tratamiento de las aftas bucales y de algunas variedades de herpes; actividad fungicida, en el tratamiento de pie de atleta; actividad molusquicida y en el tratamiento de algunos parásitos intestinales. Esta raíz ha mostrado ser sumamente versátil en sus aplicaciones pues además se ha utilizado para abrir el apetito a los pequeños, para cuajar quesos y evitar su descomposición, para cerrar llagas difíciles v hasta para librar de la rabia a humanos. Todas estas aplicaciones se comentan en la región donde existe abundancia de la raíz. Entre las anécdotas interesantes. se cuenta que durante la Revolución Mexicana a los reclusos se les hacía llegar la raíz por sus familiares, y los presos que la ingerían en cantidades considerables mostraban un incremento en la temperatura corporal, sudación profusa, salivación y taquicardia. Cuando el preso era llevado a tratamiento médico éste aprovechaba para escaparse. Se sabe que el exceso de afinina en ratas produce este tipo de síntomas y, si la dosis no es letal, el organismo se recupera totalmente después de algunos minutos<sup>6</sup>. Fuera de unos cuantos trabajos, hay poca información científica sobre la actividad biológica de la planta y su endemismo. Esto, y la falta de planes de conservación y propagación, ha llevado a un punto crítico a esta centenaria especie provocado una disminución considerable en su población.

Por sus propiedades insecticidas, durante la segunda guerra mundial esta especie se llevó casi a la extinción



por satisfacer la demanda de exportación requerida para mantener libre de parásitos a las tropas norteamericanas en su intervención en Europa. Al observar esta disminución, el departamento de agricultura de ese país decidió hacer una exploración en su territorio, en búsqueda de otra especie del mismo género con metabolitos similares a la afinina. Se encontró una amida alifática acetilénica. compuesto con actividad insecticida que se denominó escabrina por haberse aislado de Heliopsis scabra. Lamentablemente este compuesto resultó ser altamente tóxico para mamíferos en ensayos con ratones de laboratorio. La estructura de la escabrina nunca fue totalmente establecida y los especímenes botánicos clasificados como H. scabra han sido reubicados en diferentes especies, de donde hasta la fecha no se ha vuelto a aislar el compuesto.

Desde entonces se ha puesto poca atención a esta especie. En algún momento se cultivó y se difundió a casi todos los mercados de yerbas medicinales en el país en forma de pequeños manojos de aproximadamente cinco gramos, bajo el nombre de raíz azteca o peritre para aliviar el dolor de muelas. La presentación en todos los puntos de venta es similar. Un pequeño manojo amarrado que provenía, según los vendedores, de San Luis Potosí, aunque algunas otras fuentes afirman que fue cultivado sin mucho éxito económico en el estado de Ouerétaro. La colecta de material silvestre continúa y en la actualidad existen algunos esfuerzos por parte de productores en la Sierra Gorda por recuperar tan preciado material antes de su riesgosa desaparición. Ahora el cultivo se lleva a cabo en forma rudimentaria a las orillas de las parcelas o a la sombra de algunos árboles que la protegen del pastoreo. Las personas que lo cultivan observan que, de la propagación por esqueje al desarrollo total de las raíces transcurren dos años, seguramente debido a las condiciones tan pobres del suelo y a la carencia de riego. Algunos datos revelan que las plantas cultivadas en diferentes terrenos presentan la misma cantidad y patrón de alcamidas que las plantas colectadas en campo, lo que sugiere que la producción de estos compuestos en esta especie, a diferencia de otras, no está supeditada a factores ambientales.

En ensayos preliminares de los compuestos bioactivos de la raíz se ha observado una importante acción inhibitoria de las alcamidas del chilcuague sobre el desarrollo de cultivos in vitro de Escherichia coli, Pseudomonas solanacearum, Bacillus subtillis y Sacharomyces cerevisiae² y algunos hongos fitopatógenos como Sclerotium cepivorum, Sclerotium rolfssi y Fusarium oxysporum. Actualmente se realizan estudios de inhibición en Erwinia carotovora, Rizhoctonia solanii, Phytophthora infestans, Botritis sinerea y Verticillum sp.

Otros trabajos en desarrollo en el laboratorio incluyen modificaciones químicas de la estructura de las alcamidas presentes en el chilcuague para conocer su actividad biológica, la ruta de biosíntesis de dichas alcamidas y la sistemática molecular de las plantas productoras de alcamidas.

El estudio biológico y la exploración química de otras especies del género Heliopsis son necesarios para conocer si existe una relación quimiotaxonómica, esto es, si es característica del género la presencia o qué variantes se observan, así como el estudio de los requerimientos ecológicos de cada especie. Este tipo de estudios debe



acompañarse con estudios taxonómicos con marcadores moleculares, pues el género no ha sido completamente estudiado. Hasta ahora se ha observado que quizás diez o más de las catorce especies de este género existen solamente en territorio mexicano y no todas ellas están totalmente tipificadas.

## Acmella radicans

Otro género de importancia en la síntesis de alcamidas es Acmella. Desafortunadamente se ha dado un cambio reciente en la taxonomía de las especies constituyentes de este género. Algunas especies fueron consideradas inicialmente en el género Spilanthes, pero recientemente se reubicaron en el género Acmella, por lo que la cantidad actual de especies de Acmella es de cerca de 30 y quedan aún seis especies dentro del mencionado género Spilanthes. Esto ha dificultado su estudio y la organización de la información generada. Se complica su análisis dado que son especies frecuentemente pantropicales, o sea que se encuentran en todas las regiones tropicales del mundo, por lo que pueden presentar una gran variabilidad. Se ha registrado la presencia de alcamidas en varios géneros de Acmella y frecuentemente se les ha dado aplicación en la herbolaria, sobre todo como anestésicos en los dolores de muela.

Recientemente, en nuestro laboratorio se ha iniciado el estudio de Acmella radicans que al igual que Heliopsis



longipes, produce alcamidas incluyendo la mencionada afinina. La cantidad de alcamidas es menor a la encontrada en el chilcuaque, pero es del mismo orden que en otras plantas productoras de alcamidas como Echinacea purpurea y Achillea millefolium y presenta la ventaja de tener un crecimiento rápido y de fácil propagación. Esta planta está presente desde nuestras latitudes hasta Colombia en Sudamérica por lo que es una especie tropical de amplia distribución. Las alcamidas se presentan en partes aéreas, pero principalmente en los tallos y en las cabezas florales. El crecimiento rápido de esta especie puede ser de utilidad para los estudios de la síntesis de alcamidas y puede ser una alternativa interesante para algunas aplicaciones de alcamidas en gran escala, como el tratamiento de material agrícola. Estas aplicaciones están en proceso de estudio.

## Echinacea purpurea

En las grandes praderas del este del territorio norteamericano crece un género de plantas primas del chilcuague conocidas como coneflower, que botánicamente se han clasificado como *Echinacea* porque su flor madura recuerda a los erizos. Se ha sugerido que este género ha sido utilizado tradicionalmente por las tribus nómadas que habitan esas praderas. El género es endémico a esta región y la especie *E. purpurea* fue incorporada a la agricultura inicialmente como flor de corte pero hace varios años ha existido una demanda importante por sus raíces y follaje en Europa, principalmente por parte de Alemania que la incluye en las hierbas con aplicaciones farmacológicas.

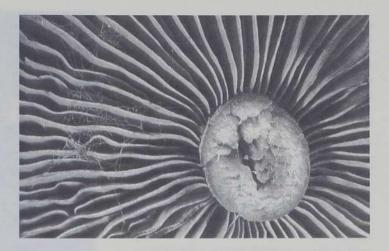
Estudios de mercado recientes han mostrado que son las especies vegetales medicinales más vendidas en todo el mundo, superando a plantas tan conocidas como el gingsen o la sábila. Son utilizadas para curar desde los resfriados hasta la baja de defensas contra las enfermedades. Debido a su bella flor, grande y purpúrea, es utilizada también como planta ornamental en muchos jardines norteamericanos. De las varias especies de Echinacea las tres más populares son E. purpurea, E. angustifolia y E. pallida. La más cultivada y comercializada es la especie E. purpurea de la que se utilizan las raíces, cabezuelas florales y partes aéreas con lo que se fabrican cápsulas, extractos, tintes y tés.



Como ya se mencionó, esta planta se ha incorporado a la agricultura y tiene un lugar en la floricultura para uso omamental tanto como flor cortada como en jardinería. En el comercio de hierbas medicinales se le considera como complemento alimentario o botanicals, de acuerdo a la clasificación de la Federal Drugs Administration (FDA) de los EUA. El mundo no deja de ser mundo y el precio que se paga por la misma especie colectada en forma furtiva es diez veces mayor?. En la actualidad han surgido otros países productores agrícolas de esta planta, entre los que destacan Canadá y Australia.

Reciente investigación y numerosas publicaciones no científicas han sugerido que la mayor de las ventajas medicinales de la planta es su eficacia en estimular el sistema inmune contra infecciones por virus, hongos, y

bacterias. Se argumenta con pocas bases científicas que las características terapéuticas de *Echinacea* se derivan principalmente de sus tres ingredientes activos: dos equinocosidos, el polisacárido heteroxilán que se encuentra en las hojas y las alcamidas olefínicas que se localizan en toda la planta. En almacenaje las alcamidas se mantienen por más tiempo en las raíces. Las preparaciones curativas hechas de las hojas, de las flores, y de las raíces de las plantas se comercializan como una ayuda en la lucha del cuerpo contra infecciones estimulando las membranas mucosas, el hígado, y los nodos linfáticos.


En diferentes fuentes de información comercial se presenta como un remedio natural recomendado para combatir la sinusitis, la garganta dolorida, la tos, los problemas de la vejiga y las infecciones del riñón. Se sugiere que *Echinacea* también tiene características cicatrizantes y antibióticas. Su potencial terapéutico tiene todavía que ser sometido a estudio experimental.

Las alcamidas presentes en el género Echinacea son de cadena larga C:16 y C:18 polinsaturadas en posición par y con uniones acetilénicas similares a las registradas para la misteriosa Heliopsis scabra y su inaceptable escabrina. Comparativamente, H. longipes produce de tres a cinco veces mayor cantidad de alcamidas que E. purpurea.

## Achillea millefolium

Otro grupo de plantas con compuestos de este tipo en la familia Asteraceae comprende el género Achillea. Se dice que Aquiles sanaba las heridas de sus guerreros en las batallas con emplastos de hojas de estas plantas y de ahí se le dio el nombre a este género. Achillea millefolium es una planta perenne nativa de Eurasia, actualmente distribuida por todo el mundo. Hay también especies americanas nativas (que pueden ser idénticas) conocidas como Achillea lanulosa.

La especie A. millefolium es la más conocida y comercializada y se encuentra en áreas herbosas y campos abiertos, a lo largo de líneas de las cercas, bordes de la carretera y a veces en céspedes. A. millefolium es también una hierba tradicional de las mujeres, usada para facilitar la menstruación. Para el uso medicinal, se cosecha



la parte aérea de la planta cuando está en flor o se cosechan las hojas poco antes de la floración, que es el período de tiempo en que su efecto es más eficaz. Las flores tienen una acción más potente que las hojas. Se han atribuido a esta especie propiedades astringentes, antisépticas, cicatrizantes, antiinflamatorias y anestésicas. Su infusión es antipirética que reduce la fiebre, tiene un sabor amargo y estimula la digestión. La ciencia moderna ha identificado decenas de compuestos biológicos activos en esta planta, entre los que destacan varias alcamidas olefínicas y acetilénicas. A. millefolium también se ha aprovechado como saborizante. Además de consumirse como bebida, la planta se ha empleado para condimentar la cerveza, el vino y otras bebidas suaves. Tanto las hojas como las flores se pueden utilizar como condimento, dando estas últimas un sazón más fuerte. Las hojas se utilizan en ensaladas. En los Estados Unidos el uso de A. millefolium en productos comerciales está restringido solamente a condimentación por su listado oficial del FDA. Cuando los animales comen A. millefolium ingieren solamente las flores, que curiosamente es el sitio donde hay más alcamidas. A. millefolium es indeseable en pastos porque transfiere su sabor amargo a la leche.

Todas las especies anteriormente referidas (H. longipes, E. purpurea, A. radicans y A. millefolium) se agrupan dentro de la gran familia de plantas Asteraceae. Es esta familia la que presenta el mayor número de especies conocidas como productoras de alcamidas, pero por limitaciones de espacio no las mencionaremos en este trabajo. Sin embargo, existen otras familias con especies

productoras de estas amidas como Aristolochiaceae, Menispermacea, Rutaceae, Solanaceae y Piperaceae. Todas estas familias presentan una o algunas especies productoras de alcamidas; para propósito del presente artículo mencionaremos las especies Zanthoxylum Piperifum, Capsicum annum y Piper nigrum.

## Zanthoxylum piperifum

La familia Rutaceae incluye a los cítricos y el género Zanthoxylum está ampliamente distribuido en Asia, África y América; consiste de árboles y arbustos generalmente con espinas. Una de las primeras amidas aisladas fue la sanshoamida obtenida de los frutos de Zanthoxylum piperitum. A sus alcamidas se le identificaron propiedades insecticidas y antibacterianas. Además de las isobutilamidas insaturadas, se observaron alcamidas hidroxiladas características de este género. Se presenta en racimos de pequeños frutos por lo que se ha llamado pimienta japonesa por el sabor picante de sus amidas.

En un estudio de especies africanas las amidas aisladas de Zanthoxylum gilletii se encontraron efectivas contra el paludismo. Sus frutos se conocen como Budo-Zanthoxylum en Japón o como pimienta china, y su nombre en japonés es zansho; además de tener actividad saborizante, cuenta con actividad bactericida que puede ser útil para conservar los alimentos poco cocinados que tanto agradan a los japoneses. En un trabajo reciente se observó que la sensación de cosquilleo de estas amidas en la boca se

debe al estímulo de fibras nerviosas sensibles al frío que causan la sensación de frescura, a diferencia de la sensación producida por la capsaicina que se mencionará a continuación.

## Capsicum annum

La familia Solanaceae comprende a los parientes de la papa. Es una de las familias que ha sido más útil a la humanidad; incluye papa, tomate, jitomate, chile y aun algunas muy venenosas como toloache y tabaco. En esta importante familia, con 450 géneros aproximadamente, sólo un género contiene alcamidas, el género Capsicum que incluye a todos los chiles en trece especies.

De las especies de este género tres se explotan a nivel comercial en lo que conocemos como variedades del chile originarias de Meso y Sudamérica; todas las especies del género presentan propiedades organolépticas, similares en diferente grado, y están contenidas exclusivamente en sus frutos. Su compuesto bioactivo más importante es la alcamida capsaicina que es realmente una alguenamida. Curiosamente, al alterar su cadena alifática por hidrogenación no cambia su poder bioactivo. Su estructura tiene algunas similaridades con la afinina encontrada en casi todas las especies con alcamidas. La diferencia más importante en sus estructuras es, por un lado, en capsaicina, la presencia de un anillo aromático que la hace más picosa; pero por otro lado la capsaicina carece de una doble ligadura conjugada al carbonilo de las alcamidas del chilcuague que la hace bactericida, fungicida e insecticida.

El chile es el saborizante más importante en la actualidad y contiene un grupo de compuestos químicos estructuralmente parecidos a la capsaicina denominados capsaicinoides. Las evidencias más antiguas de su consumo por el ser humano se remontan a 7,000 años a.C., y se localizaron en dos zonas pertenecientes a los actuales estados de Tamaulipas y Puebla en la República Mexicana. De acuerdo con la antigüedad del hallazgo, el chile podría ser el primer cultivo humano en Mesoamérica.

Hoy en día, se utiliza también en aplicaciones farmacéuticas como parches y pomadas anestésicas o antinflamatorias. Sus consumidores han adjudicado a este fruto propiedades disímbolas que incluyen hasta la



prevención de un infarto. Por otra parte, es sabido que la ingestión de chile produce alteraciones en el tracto digestivo y en el proceso de digestión<sup>8</sup>.

Los compuestos de chile se utilizan también en la preparación de gases lacrimógenos para defensa personal, aunque esto no es una novedad. Ya se tenía noticia que los nativos en México, durante la invasión de los españoles, los mantenían a raya quemando chiles y dejando que el viento se llevara el humo en cortina contra los invasores. Esta estrategia militar se puede considerar como una de las primeras que involucran principios biotecnológicos en el combate.

El uso tradicional de la oleoresina de Capsicum se da en la industria de los saborizantes a nivel internacional, y en la preparación de salsas picantes. En forma más reducida se agrega en pequeñas cantidades a pastas dentales, enjuagues bucales, dulces y chicles a base de menta y canela, para resaltar el sabor y ofrecer una sensación refrescante. En Europa, el sabor de las bebidas gaseosas de jengibre es reforzado con pequeñas cantidades de esta oleoresina. Los dulces típicamente mexicanos, como son los tamarindos enchilados y otros de reciente auge, se preparan principalmente por la adición de chile en polvo. La demanda de productos con sabor picante en nuestro país ha hecho que se importe la oleoresina, que aumenta la sensación picante, ahora llamada pungencia, de las salsas picantes comerciales. Se men-

cionan casos de tratamiento de frutos con esta oleoresina para realzar su sabor. Desafortunadamente la principal producción de la oleoresina de *Capsicum* se realiza en cultivos de Africa.

## Piper nigrum

El caso de la familia Piperaceae comprende árboles pequeños, arbustos, trepadoras y epífitas tropicales. Es una familia tropical que habita básicamente en selvas húmedas en ambos hemisferios. Consta de 5 géneros y el principal es Piper. Algunos autores reconocen en este género a cerca de 2,000 especies. Otros autores aceptan sólo cuatro géneros, por las diferencias en la inflorescencia. reduciendo a 700 las especies de Piper. Esta familia pantropical también tiene la capacidad de sintetizar alcamidas. Por su uso desde tiempos remotos en el viejo mundo, Piper nigrum (pimienta negra) ha sido tradicionalmente la especia más consumida por la humanidad. motor de la actividad comercial y uno de los motivos del descubrimiento de una nueva ruta a las Indias al concluir la edad media. Es una planta perenne originaria del sudoeste de la India, la costa de Malabar y hoy en día es cultivada en la India, Indonesia, Malasia, Sri Lanka v Brasil

La pimienta negra es, probablemente, la especia que más influencia ha tenido sobre la historia de la humanidad y en particular sobre las naciones del viejo mundo. Este condimento está constituido por los frutos maduros secos de la especie *Piper nigrum* y es la forma más difundida de consumo. La denominada pimienta blanca se obtiene de estos mismos frutos. Estos se dejan madurar por mayor tiempo en el racimo y posteriormente se remojan en agua para retirarles la cubierta negra y obtener así una semilla de apariencia más blanca. Este tratamiento modifica en cierta forma su sabor y ofrece una presentación distinta de la especia. De difusión más restringida, una variedad de la misma especia, la pimienta verde frecuentemente se presenta en forma de salmuera o seca.

Aunque otras especies de Piper se distribuyen en los trópicos, muy pocas han sido estudiadas en sus componentes químicos. En las regiones tropicales de México se consume la hoja santa o acuyo (Piper auritum) por el aroma anisado y el sabor picante de sus hojas. P. amalago se exporta de México a Brasil y se utiliza para aliviar el

dolor de pecho y como agente antinflamatorio. En Polinesia, en forma de bebida ritual, se consume tradicionalmente la planta denominada Kava-kava (Piper methysticum). La bebida se obtiene al premasticar la raíz y dejar fermentar el producto; se utiliza en ceremonias religiosas de las comunidades de estas islas. Se argumenta que su consumo reduce la tensión emocional y actúa en forma similar al Valium sin privar al consumidor del estado de alerta.

La pimienta negra emigró de la India hace más de 4,000 años y se ha considerado una de las especias más preciadas. En la era clásica griega y durante el imperio romano se utilizó por su valor para el pago de tributos y como materia de contrabando.

La piperina es la principal alcamida presente en *Piper nigrum* y aunque está acompañada de otros muchos alcaloides, también se observan isobutilamidas con isomería distinta a la afinina. Las alcamidas presentes en los frutos son las principales responsables del sabor picante de la pimienta, aunque también caracterizan su sabor la gran variedad de estructuras amidas y el notable surtido de alcaloides. El aceite clarificado de pimienta, de presentación comercial, contiene 55% de piperina.

La piperamida también fue la primera alcamida aislada del género *Piper* y se encontró que es un depresor del sistema nervioso, antipirético, analgésico y antiinflamatorio. Hasta la fecha se han registrado cerca de 150 amidas en este género con muy diversas estructuras de acuerdo a Parmar y colaboradores<sup>3</sup>.

#### Consideraciones finales

Después de la conquista de América por los españoles se creó una confusión entre las especies de *Capsicum y Piper*. Por una parte en el idioma inglés se usa indistintamente la palabra *pepper* para las dos especies y en España se utiliza el nombre de pimientos para las diferentes especies y variedades de *Capsicum*. En México se llama pimiento morrón o pimiento verde a los frutos de las variedades dulces, sin sabor picante, que se utilizan como verdura. La *paprika* se ha consagrado en Hungría. En Sudamérica se conoce popularmente como ají, pero aparentemente los frutos más picosos en este género se obtienen hoy en día de cultivos naturalizados en Africa central. Cabe



mencionar que también los turcos, después de incorporarlo a sus cultivos, lo comercializaron en Europa, conociéndose entonces al chile como pimienta turca: paprika es un apócope de peper turka.

Una estructura molecular como la de la afinina, nos permite también elucubrar sobre las similitudes de la capsaicina y su probable interacción con sus receptores; la presencia del grupo bencilamina sustituido, que da un potente sabor picante a la capsaicina, es más reducido en estas alcamidas. Por otra parte la capsaicina carece de la doble ligadura trans conjugada a la amida por lo que no presenta actividad insecticida observada en las amidas de las Asteraceas. El potencial de un saborizante de este tipo en la industria alimentaria puede ser interesante.

A. radicans, E. purpurea y A. millefolium tienen algunas diferencias importantes con el chilcuague. Contienen alcamidas no sólo en la raíz sino también en las hojas y tallos, aunque en cantidades menores. El chilcuague contiene cinco a cien veces más alcamidas olefínicas que las especies mencionadas.

Muchas veces las diferencias entre alimento, medicina y veneno son una cuestión de dosificación. Las plantas con alcamidas se deben tratar con respeto y utilizar escasamente. El uso extendido o excesivo, interno o externo, es probable causa de algunos males. Las personas que presentan erupciones en la piel al manejar algunas plantas pueden ser alérgicas a las alcamidas. En México existe una cantidad considerable de especies con alcamidas que no han sido estudiadas desde el punto de vista fitoquímico. La megadiversidad existente en este país ha puesto en nuestras manos importantes recursos, originalmente endémicos, como son algunas de las especies arriba mencionadas. Es necesaria la exploración y el análisis de estos recursos para su conocimiento. Existen pocos grupos de estudio en este campo; su intercomunicación favorecería la sinergia de sus actividades. Se hace una invitación a los estudiantes de las áreas químico-biológicas y humanitarias a que se aboquen a la protección y el estudio de los recursos que forman parte del acervo del conocimiento tradicional indígena de nuestro pueblo.

Agradecimientos. Los autores desean agradecer el apoyo económico para la realización de este proyecto de investigación a las siguientes instituciones: CONACyT convenio: 26398N, SIHGO convenio 97810 y Fundación Guanajuato Produce convenio 31/98.

## Notas

- 1. A.L. Lehninger, *Biochemistry* (Worth Publishers, Nueva York, 1970).
- 2. J. Molina-Torres, A. García-Chávez y E. Ramírez-Chávez, J. Ethnopharmacol. **64**, 241 (1999).
- 3. V.S. Parmar et. al., Phytochemistry 46, 597 (1997).

4. E.L. Little, Bol. Soc. Bot. Méx. 7, 23 (1948).

5. M. Martínez, Las Plantas Medicinales de México (Editorial Botas. México, 1994).

6. A. Martínez Martínez, tesis profesional, Facultad de Veterinaria, UNAM (1983).

7. P. Brevoort, HerbalGram 44, 33 (1998).

8. G.A. Cordell y O.E. Araujo, Ann. Pharmacotherapy 27, 330 (1993).



# VIII Congreso Nacional de Ciencia y Tecnología del Mar



Manzanillo, Col. 14 al 16 de noviembre del 2001

El programa técnico del congreso cubre los siguientes aspectos:

- Recursos y medio ambiente
- **Acuacultura**



- Pesquerías
- Tecnología de alimentos
- Ordenamiento costero

#### Informes:

Comité Organizador
Departamento de eventos especiales
Dirección General de Educación en Ciencia y Tecnología del Mar
Dr. Jiménez No. 47 Col. Doctores.
Delegación Cuauhtémoc
06720, México, D.F.
Tels: 5578 5721/3065/2633/1751/5747 Ext. 138
Directo y Fax: 5578 5617
opuecytm@sep.gob.mx

## El citoesqueleto en plantas durante la mitosis y la citocinesis

Magdalena Segura Nieto

### Generalidades

La red macromolecular más importante en las células eucarióticas es el citoesqueleto, que permite llevar a cabo una gran variedad de movimientos coordinados y dirigidos. Se dice que el crecimiento y desarrollo de todas las células de las plantas depende de un citoesqueleto integralmente funcional. Hasta el momento no se conocen todos sus componentes y no se tiene un panorama completo de su arquitectura y funcionamiento. El citoesquelto de las plantas ha sido menos estudiado que el de células animales y en muchos casos se ha asumido que su organización y funcionamiento es similar al de células animales. Por otra parte, en el citoesqueleto de plantas se han desarrollado funciones distintas de las de animales como se señala adelante.

Las células de las plantas responden a una gran variedad de estímulos internos y externos con rápidos y espectaculares rearreglos en el citoplasma. Esta plasticidad del citoplasma se debe a la presencia de un citoesqueleto dinámico constituido por tres principales familias de proteínas que al polimerizar forman redes de filamentos interconectados: los microfilamentos (MF) con un diámetro de 7-9 nanómetros (nm), los microtúbulos (MT) con diámetro de 25 nm y los filamentos intermedios (FI) con diámetro de 10-15 nm. Se dice que los FI son los más rígidos y sugieren una función más estructural que de movimiento, mientras que los MT y los MF tienen ambas funciones estructurales y muy dinámicas.

La Dra, Magdalena Segura Nieto es investigadora titular del Departamento de Ingeniería Genética de la Unidad Irapuato del Cinvestav Dirección electrónica: msegura@ira.cinvestav.mx;



La red de los MF está constituida por polímeros de la actina; esta es una proteína muy conservada con actividad de ATPasa, predominantemente citoplasmática de estructura globular (ácida) que existe como monómero (G-actina) y en forma de filamento (F-actina). Cada subunidad une un ATP y un catión divalente (Mg+2), con un PM aproximado de 43 kDa. En condiciones fisiológicas la actina polimeriza en filamentos largos y a baja concentracion de sales es estable como G-actina o durante la interacción con proteínas como profilina, timosina o DNAsa I. La longitud de los filamentos de actina está controlada por proteínas que se unen a los extremos del filamento de actina, extremo (+) o de rápido crecimiento, el cual es estabilizado por proteínas tipo CapZ. El extremo (-) o de crecimiento lento está estabilizado por proteínas como la tropomodulina. Existen toxinas que estabilizan los MF como la faloidina o que la despolimerizan como la citocalasina B y proteínas que rompen los MF como la gelsolina, la severina o la cofilina. La polaridad de los filamentos de actina es una propiedad fundamental para la interacción actina-miosina que es la principal proteína motora responsable de conducir la mayoría de los movimientos dependientes de F-actina (MF), como en la translocación de vesículas, en las comientes citoplasmáticas y en la separación de las células hijas en la citocinesis.

La red de MT está formada por polímeros del heterodímero de  $\alpha$ -y  $\beta$ -tubulina, ambas proteínas globulares ácidas, con un PM aproximado de 55 kDa. La tubulina pertenece a una familia de proteínas muy conservada, con actividad de GTPasa. El ensamble de

los microtúbulos involucra tres pasos: primero la formación de protofilamentos, a partir de α-y β-heterodímero de tubulina, enseguida la asociación de protofilamentos para formar el túbulo y finalmente la adición de dímeros de tubulina para alargar el MT en el extremo (+), mientras en el extremo (-) se favorece la despolimerización. Las drogas antimitóticas específicas que desestabilizan los MT son taxol, colchicina y vinblastina. Las proteínas asociadas a microtúbulos (MAPs) estabilizan y protejen la despolimerización de los MT. Estas MAPs de ensamble pueden organizar cables de MT, entrecruzarlos con la membrana plasmática v con los filamentos intermedios (FI). El ensamble y desensamble de los MT dependen de la concentración crítica (Cc) de los dímeros de α-y β-tubulina. Las proteínas motoras que utilizan los MT como rieles para ejecutar las distintas funciones en que participan son las ATPasas kinesina y dineína; la primera transporta vesículas principalmente hacia la membrana plasmática (+) en el transporte anterogrado y los cromosomas en husos mitóticos que se dirigen hacia el polo (-) y la dineína que acarrea vesículas citosólicas que se dirigen hacia el interior en el transporte retrogrado o interacciona con los cinetocoros, durante la mitosis y la meiosis hacia el polo, extremo (-) del MT del uso mitótico.

Finalmente, los filamentos intermedios (FI) están constituidos por cuatro diferentes clases de proteínas de distinto PM que se etiquetan según las proteínas que los constituyan. Entre éstos están las láminas que se encuentran en el núcleo de todas las células y en el citoplasma están los filamentos de keratina, de vimentina o los neurofilamentos. Estos cuatro grupos de filamentos

intermedios se encuentran en diferentes tipos de células animales y tienen en común una región intermedia conservada, en forma de bastón de aproximadamente 300 aminoácidos, con una estructura de alfa hélice abierta, flanqueada por dominios globulares divergentes, en cada extremo de la molécula. En plantas existe poca información sobre las láminas nucleares, que son polímeros de subunidades diméricas que forman estructuras reticulares y no se ha caracterizado la presencia de los otros tres tipos de filamentos intermedios en el citoplasma de células vegetales.

## Mitosis y citocinesis

El citoesqueleto tiene un papel fundamental en la mitosis, que es la etapa del ciclo celular en donde los cromosomas duplicados se separan físicamente y forman dos nuevos núcleos, y en la citocinesis durante la partición de una célula en dos. Ambos procesos son llevados a cabo por elementos del citoesqueleto y existen diferencias importantes entre células animales y de plantas. En la figura 1A se muestra un esquema de la mitosis y la división celular en plantas y sólo se destacan las fases de la mitosis y de la citocinesis que son diferentes con respecto a las de células animales. En el panel 1B se muestran micrografías inmunofluorescentes que identifican el rearreglo de MT durante la mitosis en interfase, profase, metafase y telofase sin llegar a la citocinesis, que comoboran el esquema mostrado en A.

(1) La pared celular le imprime rigidez a las células de plantas. La célula vegetal no sufre cambios dramáticos de forma durante los procesos de mitosis y citocinesis. En la interfase existen arreglos de los microtúbulos y los microfilamentos que participan en la orientación y expansión celular que se encuentran rodeando a la célula en la región cortical (adyacente a la membrana plasmática). También existen arreglos de MT que radían del núcleo hacia el citoplasma y que participan junto con los MF en distintos fenómenos de motilidad celular intracitoplásmica.

(2) El huso mitótico de plantas y animales se organiza diferente. Las plantas no tienen centrosomas y tampoco centriolos. En plantas la estructura del huso mitótico consiste de cientos de microtúbulos y de proteínas que se asocian a éstos. (i) En la profase los cromosomas se

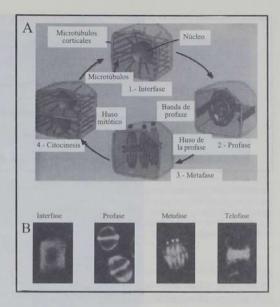



Figura 1. Mitosis y citocinesis en células de plantas superiores. (A) Pasos del ensamble de los husos mitóticos en plantas superiores. (1) Célula en Interfase. Los microtúbulos (MT) se encuentran en dos arreglos, los corticales en la parte interna de la membrana plasmàtica y los MT que salen de la envoltura nuclear, (2) Profase. Los MT se juntan formando la banda de la preprofase en el plano donde se formará la nueva pared celular. (3) Metafase. La banda de la preprofase se pierde. los MT forman completamente los husos mitóticos, los cromosomas se alinean en la placa ecuatorial del huso mitótico. (4) División celular (citocinesis). Una vez que pasa la anafase separando los cromosomas hacia los polos y los polos se separan, empleza la telofase. Se reforma la envoltura nuclear, se rompen los husos mitóticos y se forma el fragmoplasto y de aquí la nueva pared celular crece hasta encontrar el resto de la pared celular parental, que es el sitlo donde se formó la banda de preprofase. Se reforman los rearreglos de MT corticales y MT nucleares. (B) Micrografias inmunofluorescentes que identifican el rearregio de MT durante la mitosis, en: interfase, profase metafase y telofase sin llegar a la citocinesis.

condensan, los "husos mitóticos de la profase" se organizan y pasan alrededor del núcleo, siendo ésta otra característica de la mitosis de plantas. Por otra parte, los microtúbulos y los microfilamentos se juntan hasta formar "la banda de la preprofase". Esta banda marca el sitio donde ocurrirá la próxima división celular. En la figura 1 la cabeza de flecha señala la banda de la preprofase. En la prometafase desaparece la banda de la preprofase, la envoltura nuclear se rompe, maduran los cinetocoros de los cromosomas, los husos mióticos capturan los



cromosomas que se van hacia el huso del ecuador. Se empiezan a organizar husos mitóticos polares, que difieren en la organización de los husos mitóticos de los centrosomas en animales. (ii) En la metafase, se forma completamente el uso mitótico y el huso o placa ecuatorial. Aparentemente se forman varios polos mitóticos (figura 1A y 1B marcados con \* en metafase) que corresponden con el número de cromosomas. Esto por el momento es una especulación, basada en las tincionces por inmunofluorescencia con antitubulina (figura 1B \*metafase). Posteriormente en anafase, los cromosomas se dirigen a los polos, donde éstos se separan. (iii) En la telofase, la envoltura nuclear se reforma, se descondensan los cromosomas, el huso mitótico se rompe y se forma el fragmoplasto.

(3) Citocinesis. El organelo citocinético en las plantas es el fragmoplasto. Este organelo está formado de vesículas de la interzona originarias del aparato de Golgi que viajan a través de los MT y que serán las membranas plasmáticas de las células hijas. Las vesículas contienen polisacáridos, precursores de celulosa y pectina, que se encuentran orientadas perpendicularmente para formar la pared celular. Por otra parte tambien se acumula MF, miosina, MT y algún tipo de kinesina, como la TKRP125, que fue la primera proteína motor tipo kinesina aislada de fragmoplasto de tabaco. Posteriormente los MT corticales y los MF corticales regresan a su posición submembranal. Es posible que los filamentos intermedios también reaparezcan, como se observa en la inmunodetección con antikeratina animal y que se detectan durante todo el ciclo celular (figura 4), pero aún faltan muchos estudios sobre la caracterización de FI en plantas.

La organización de los filamentos de actina (MF) durante la mitosis no está tan definida como ocurre con los

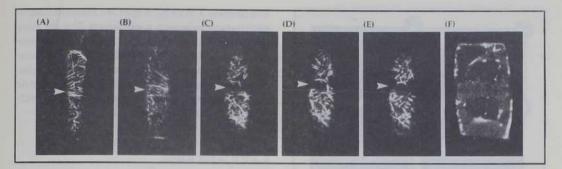



Figura 2. Distribución de los filamentos de actina (MF) durante la mitosis en células vivas de los pelos de los estambres microinyectado con faloidina fluorescente, toxina que se une especificamente a MF. (A) y (B) Profase. Se forma una banda (preprofase) transversal relajada de MF que marca el nuevo sitio de division celular (señalado con cabezas de flecha). Las imágenes muestran las misma célula por la parte superior e inferior. En otra célula, (C) profase, (D) metafase, E) anafase, y F) telofase en el plano medio. Los filamentos de actina se perdieron de la banda de la preprofase en la profase tardía como lo señalan las flechas, aunque es posible que estén en otro plano focal.

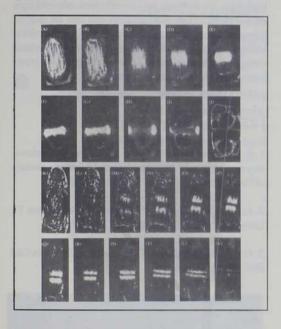



Figura 3. Comparación de la distribución de las MT y de las MF en el fragmoplasto de células vivas de los pelos de los estambres. (A-J) La trubulina fluorescente ilumina el fragmoplasto conforme se condensa fuera del huso mitófico de la zona media (C-E). Se observa como una estructura anular y crece hasta alcanzar las paredes parentales. La ausencia de una banda obscura al ecuador significa que los MT están presentes en toda la región. (K-V) Los MF marcados con faloidina fluoresceinada se reclutan en el fragmoplasto junto con los MT, Los MF no forman estructuras anulares tan caracteristicas como los MT y tienden a permanecer en la nueva placa celular. La banda negra del ecuador indica que los MF no atraviesan el ecuador, mientras que los MT si (C-E).

MT. En la figura 2 se muestra una secuencia de micrografías durante la mitosis en células vivas de los pelos de los estambres microinyectados con faloidina fluorescente. Esta toxina se une especificamente a MF y no a G-actina. Durante la profase (figura 2A y 2B) se forma una banda (preprofase) transversal relajada de MF que marca el nuevo sitio de división celular (señalado con cabezas de flecha), pero siguen grandes acúmulos de MF en la región cortical. Las imágenes muestran las misma célula por la parte superior e inferior. En otra célula en profase los filamentos de actina se perdieron de la banda de la preprofase en la profase tardía, figura 2C, como lo señalan las flechas, aunque es posible que estén en otro plano focal ya que son células vivas. Durante la metafase, la anafase y la telofase en el plano medio, los MF aparecen en grandes acúmulos de racimos y es difícil de identificar su organización (figuras 2D-2F); sólo en la telofase (2F) se observa una gran cantidad de MF corticales.

## Formación del fragmoplasto en células vivas

El estudio comparativo de la distribución de los MT y de los MF durante la formación del fragmoplasto de células vivas de los pelos de los estambres se muestran en la figura 3. La tubulina fluorescente ilumina el fragmoplasto conforme se condensa fuera del huso mitótico de la zona media como se observa en los paneles (3A-3J). En los paneles 3C-3E se observa al fragmoplasto como una estructura anular, que crece hasta alcanzar las paredes

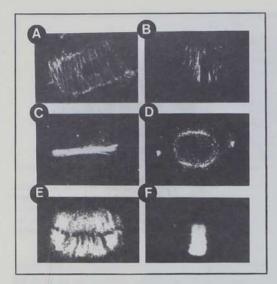



Figura 4. Micrografías fluorescentes de células de la punta de la raíz de trigo, teñidas con anti-keratina (filamento intermedio de células animales). El anticuerpo reconoció proteínas fibrosas a todo lo largo de ciclo celular. Los arreglos teñidas se parecen a los de microtúbulos como también ocurre en células animales. (A, B) Células en interfase que detectan arreglos filamentosos corticales parecidos a MT. (C,D) Profase. Se tiñe la banda de preprofase en la periferia celular y en la región polar del núcleo en (D). Ambas regiones son ticas en MT. (E,F) Células en división con un patrón parecido al de MT en metafase y en el fragmoplasto respectivamente.

parentales. La ausencia de una banda obscura al ecuador significa que los MT están presentes en toda la región.

Los MF marcados con faloidina fluoresceinada se reclutan en el fragmoplasto junto con los MT (paneles 3K-3V). Los MF no forman estructuras anulares tan características como los MT y tienden a permanecer en la nueva placa celular. La banda negra del ecuador indica que los MF no atraviesan el ecuador, como es el caso de los MT (C-E).

Por otra parte, se observó que los anticuerpos contra keratinas de animales, reconocen a proteínas en la región cortical de las células de raíz de trigo. Esta organización de "posibles FI tipo keratina de plantas" se detectan durante todas la etapas del ciclo celular como se observa en la figura 4 (4A-4F). Durante la telofase (4F) el fragmoplasto presenta una distribución de "posibles FI"

muy parecida la de los MT (Figura 3F). Estos anticuerpos antikeratina reconocen a estructuras fibrosas cuya distribución se parece a la de los MTs, como se ha descrito que ocurre en algunas células animales. No es de extrañar que los FI pudieran colocalizar con los MTs por entrecruzamiento por MAPS de ensamble que son capaces de entrecruzar proteínas del citoesqueleto de FI con MTs corticales en células animales.

#### Conclusiones

Es evidente que el conocimiento sobre el citoesqueleto de plantas es muy preliminar; afortunadamente hay bastante información en células animales sobre sus componentes, organización, regulación, funcionamiento y genética. Sin embargo, este conocimiento aún está lejos de ser integral. También es cierto que con las nuevas herramientas de genómica, proteómica, bioinformática y la asociación funcional de todos estos datos se impulsará vertiginosamente el entendimiento de qué es y cómo funciona el citoesquelto en plantas.

#### Notas

- 1. B. B. Buchanan, W. Grissem y R.L. Jones, *Biochemistry and molecular biology of plants* (American Society of Plant Physiology, Rockville, Maryland, 2000).
- 2. H. Lodish, A. Berk, S. L.Zipurski, P. Matsudaira, D. Baltimore y J. Darnell, *Molecular Cell Biology*.
- 3. O. J. Rando, K. Zhao y G,R. Crabtree, *Trends in Cell Biol.* **10**, 92 (2000).



## Bacterias promotoras del crecimiento de plantas: agro-biotecnología

Rocío Jiménez Delgadillo, Gil Virgen Calleros, S. Tabares Franco y Víctor Olalde Portugal La biotecnología ofrece herramientas para el desarrollo sostenible de la agricultura cuando se integra debidamente con otras tecnologías para la producción de alimentos y productos agrícolas, contribuyendo en gran medida a satisfacer en el nuevo milenio las necesidades de una población en crecimiento. La biotecnología puede ser definida como el uso integrado de bioquímica, microbiología, genética molecular y procesos tecnológicos, y desarrollada por microorganismos, genes, células y tejidos de organismos supe-riores para obtener un beneficio¹.

La FAO<sup>2</sup> reconoce que la biotecnología agrícola puede contribuir a elevar la producción en este sector. Las principales técnicas de la agro-biotecnología incluyen fermentación, cultivo de tejidos, procesos enzimáticos, producción de anticuerpos, técnicas donde se emplean marcadores moleculares y la aplicación de inoculantes biológicos. De acuerdo a esto último, el uso de inoculantes incluye la selección y multiplicación de microorganismos benéficos para las plantas, tanto de aquellos que protegen a la planta contra el ataque de patógenos, plagas y malezas, como de aquellos que le proporcionan nutrimentos.

## Biocontrol

Los microorganismos con etecto benéfico en la planta pueden tener un potencial considerable como agentes de biocontrol y biofertilizantes. Se distinguen tres grandes grupos: (a) microorganismos fijadores de nitrógeno, (b)

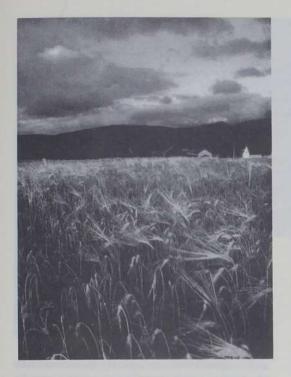
El Dr. V. Olalde Portugal es investigador titular del Departamento de Biotecnología y Bioquímica de la Unidad Irapuato del Cinvestav. R. Jiménez Delgadillo es estudiante de doctorado de este departamento. G. Virgen Calleros es investigador del CUCBA de la Universidad de Guadalajara y S. Tabares Franco es gerente del grupo LAPISA. Dirección electrónica: volalde@ira.cinvestav.mx



hongos micorrízicos, (c) bacterias promotoras del crecimiento de plantas. Este último grupo de bacterias es conocido como PGPR (promoting growth plant rhizobacteria) y fue definido por Kloepper³ como bacterias habitantes de la raíz que estimulan significativamente el crecimiento de plantas. En años recientes se ha caído en cierta controversia, ya que no se sabe hasta qué punto se puede considerar a una rizobacteria como PGPR, por lo que se han establecido cuatro características que definen este grupo:

- (a) Que no requieran de la invasión interna de tejidos en plantas, como ocurre en hongos micorrízicos con la formación de arbúsculos o nódulos en el caso de Rhizobium.
- (b) Que tengan una elevada densidad poblacional en la rizósfera después de su inoculación, ya que una población que declina rápidamente tiene una baja capacidad competitiva con la microflora nativa del suelo.
- (c) Que presenten capacidad de colonización efectiva en la superficie de la raíz y, como consecuencia, puedan influir positivamente en el crecimiento de la planta.
- (d) Que no produzcan daño en el hombre ni a otros microorganismos.

En cuanto al efecto positivo sobre el crecimiento de las plantas, las PGPR pueden actuar de manera indirecta o directa<sup>4</sup>:


Mecanismos indirectos: los metabolitos producidos por las PGPR pueden funcionar como determinantes antagónicos, involucran aspectos de control biológico, suprimen o inhiben el crecimiento de microorganismos perjudiciales para el desarrollo de la planta, vía producción de sideróforos, antibióticos, acción de enzimas líticas (glucanasas, quitinasas) o inducción de mecanismos de resistencia.

Mecanismos directos: ocurren cuando los metabolitos producidos por algunas cepas de rizobacterias son utilizados como reguladores de crecimiento o precursores de éstos por parte de la planta.

La conjunción de ambos mecanismos de acción ha dado como resultado la promoción evidente del crecimiento en plantas; se ha observado un incremento en la emergencia, el vigor y el peso de plántulas, un mayor desarrollo en sistemas radiculares y un incremento hasta de 30% en la producción de cultivos de interés comercial, tales como papa, rábano, jitomate, trigo y soya<sup>5</sup>.

La mayoría de las investigaciones realizadas en este ámbito se han enfocado a la elucidación de mecanismos involucrados en el control biológico y relativamente poco en el conocimiento relacionado con la promoción directa. Esto ha dado pauta para realizar estudios que consideren principalmente la densidad del inóculo, fisiología de la cepa promotora, temperatura, propiedades del suelo, cultivo y genotipo de la planta; el objetivo es entender de manera clara los mecanismos de promoción de crecimiento de plantas inducido por cepas PGPR, con el propósito de aislar y seleccionar nuevas cepas que representen una fuente exitosa de inoculantes biológicos en la agricultura, así como en la elaboración de productos comerciales.

Cabe mencionar que en la actualidad el uso de microorganismos representa sólo el 1.4% (380 millones de dólares) del mercado global para el control de plagas y enfermedades. Los productos generados a partir de *Bacillus thuringiensis* para el control de plagas son los más abundantes en el mercado. Una de las causas de su éxito es su facilidad para formularse, a diferencia de los biofungicidas donde el producto requiere del manejo del microorganismo vivo para tener un efecto benéfico<sup>6</sup>.



Lo anterior muestra que este tipo de productos no está bien establecido en la agricultura comercial en el ámbito mundial y mucho menos en México. Para que un microorganismo antagónico se pueda utilizar en el desarrollo comercial de un biofungicida se deben cumplir con los siguientes criterios: (1) efectiva supresión del patógeno antes de que cause un importante daño económico; (2) consistencia en los resultados en condiciones de campo; (3) adaptación a un sistema de manejo integrado para el control de plagas y enfermedades; (4) precio competitivo con otras medidas de combate; (5) compatibilidad con otros tratamientos para el control de otras plagas o enfermedades; (6) adaptación al uso cotidiano de las prácticas agrícolas; (7) inocuidad a otras especies, al hombre y al ambiente.

## Biofungicidas en cultivo de papa

Para llegar a tener un biofungicida con estas características es fundamental entender la interacción entre el patógeno y el organismo antagónico. Teniendo esto presente, en el Laboratorio de Bioquímica Ecológica del Departamento de Biotecnología y Bioquímica de la Unidad Irapuato del Cinvestav se desarrolló un biofungicida en contra de Rhizoctonia solani. El desarrollo de este producto involucró convencer a los productores de papa que el uso de microorganismos era una buena alternativa. Pero, ¿por qué con los productores de papa? Uno de los resultados del tratado de libre comercio de América del Norte, entre México, los Estados Unidos y Canadá, indica que los productores de los dos últimos países citados podrán comercializar su producción de papa en México en los próximos años; este hecho podría ser intrascendente. pero la realidad es que podría traer también consecuencias económicas graves a los productores mexicanos v a la región donde se siembra esta hortaliza. Al menos en la región de el Bajío, los agricultores invierten \$85,000 pesos por hectárea mientras que nuestros vecinos del norte gastan aproximadamente \$30,000. Una de las razones de los altos costos de producción en el Bajío es que dentro de su sistema de producción tienen que utilizar una gran cantidad de productos químicos de importación para el control de plagas y enfermedades, y en muchas ocasiones son poco efectivos.

Con esos antecedentes, se comenzó a trabajar en el aislamiento de uno de los hongos que mayor importancia tienen para este cultivo: *Rizhoctonia solani*. En principio se encontró una gran diversidad de cepas del hongo, lo que nos hizo comprender porqué los productos químicos no siempre eran efectivos.

Como era fundamental conocer al enemigo a vencer, se realizó el estudio del comportamiento en suelo de las diferentes cepas de hongos. Al mismo tiempo se aislaron los organismos antagónicos de este patógeno. De unos 30 aislados bacterianos que tenían capacidad antagónica in vitro, se seleccionó uno que podía inhibir el desarrollo de los diferentes tipos de rizhoctonias. Es reconocido que muchos organismos son capaces de antagonizar a otro en medios de cultivo bacterianos pero cuando se prueban en suelo esta capacidad no se expresa. Por ello el siguiente paso fue realizar los ensayos en invernadero con suelos contaminados con este hongo; los resultados mostraron una reducción significativa de la enfermedad. Ensayos adicionales en laboratorio permitieron identificar que esta bacteria era capaz de inhibir a prácticamente todos los grupos de anastomosis de Rizhoctonia solani, algunas cepas de Fusarium sp. y de Phytophthora infestans. Esto representa una ventaja, como lo ha sugerido Lark<sup>7</sup>, y es posible utilizarla en el manejo integrado de plagas y enfermedades

Convencidos que tenía buena perspectiva, identificamos esta bacteria y comenzamos a realizar estudios fisiológicos para optimizar sus condiciones de crecimiento, en medios de cultivo baratos y sin menoscabo de su actividad antagónica; estos requisitos son fundamentales para su aplicación a nivel industrial. Los resultados indicaron que se trataba de un Bacillus subtilis (bacteria esporulada), la cual denominamos BEB-8bs, con capacidad para crecer en medios muy simples y baratos.

Continuamos estudiando a la bacteria; para los siguientes años se sabía que su actividad antagónica era debida a tres péptidos que se producían a finales de la fase de crecimiento exponencial. Asimismo, se reconoció que la estabilidad de su capacidad antagónica era de más de 6 meses sin refrigeración, lo que era más atractivo para su comercialización pues indicaba una vida de anaquel larga, comparada con otros productos existentes en el mercado internacional.

## Prueba crítica

Con los avances logrados, la prueba crítica era ante los productores; para esto, algunos agricultores interesados prestaron sus campos para probar el producto. Lo iban a comparar con otro producto biológico que existe en el mercado y con los agroquímicos que ellos utilizan. Al final del primer ensayo el producto fue muy recomendable, se había logrado controlar la enfermedad y los rendimientos eran muy superiores; adicionalmente, se obtenían papas de mejor calidad, lo que repercute en el precio. No obstante esos resultados, se repitieron en varios ciclos de cultivo y en otros sitios como Jalisco y Sinaloa donde la incidencia de la enfermedad es alta; los resultados fueron similares, la bacteria sí funcionaba en campo, y en muchas de las ocasiones se incrementaron los rendimientos hasta en 10 ton por hectárea.

Con el entusiasmo que caracteriza a los estudiantes de la Unidad Irapuato, Gil Virgen (estudiante de doctorado) mostró parte de los resultados en campo a unos empresarios (LAPISA) que recién habían abierto



en su compañía la división agrícola y querían introducir productos biológicos. Ya interesados, comenzaron las preguntas: ¿cuál es la dosis?, ¿cómo se aplica? y ¿qué implementos agrícolas se requieren? Respuestas que no teníamos. Por lo que regresamos al laboratorio y al campo para tratar de responder a esos cuestionamientos. Al cabo de un año se sabía que se requería un litro por hectárea de una suspensión bacteriana de al menos 106 ufc por ml y que se podían aplicar con una aspersora sobre la semilla y el surco, al momento de la siembra. A raíz de esos ensayos, en uno de los terrenos no se presentó la enfermedad, pero para nuestra sorpresa las plantas a las que se les había adicionado el B. subtillis produjeron más Kg por hectárea y las papas fueron de mejor calidad. Estabámos ante una bacteria promotora de crecimiento que tiene como mecanismos de promoción la inhibición de patógenos y la estimulación directa del crecimiento de las plantas.

Regresamos a LAPISA, que cabe aclarar es una compañía que cuenta con reconocimiento de calidad internacional ISO 9002, lo que podría asegurar que se comprometía a llevar un proceso control de calidad. Sin una orientación adecuada por parte nuestra, comenzaron



las negociaciones hasta llegar a un acuerdo. La siguiente etapa iba a correr por cuenta de ellos, un análisis de mercado y los aspectos de comercialización. Luego vendría la presentación del producto, donde nosotros deberíamos informar sobre los detalles técnicos. Según los principios de la mercadotecnia, se requería un producto atractivo en su envase para los consumidores y que lleve información técnica sencilla que refleje las bondades del producto.

## Probacil

Después de reunimos en varias ocasiones se llegó a definir que por cuestiones mercantiles debería tener color y consistencia atractivos. Ensayamos diferentes colores y dispersantes que no inhibieran a la bacteria ni su poder antagónico hasta llegar a convencer al departamento de comercialización. Mientras tanto, el departamento que se encarga del registro de los productos llegó a la conclusión que el nombre más adecuado, pues no existía alguno parecido en el mercado, era *Probacil*.

Ya en el mercado, otro problema fuerte que se tuvo que resolver fue la densidad del microorganismo, debido a que en el mercado existe un producto donde su etiqueta marca una concentración de  $10^{\circ}$  ufc por ml y el Probacil llevaba  $10^{7}$  ufc por ml, suficientes para dar excelentes resultados en el campo, pero que desde el punto de vista mercantil daba una desventaja comercial al Probacil.

Una fase que realizó integramente LAPISA fue el registro del producto ante la CICOPLASFEST de la Secretaría de Agricultura y Ganadería (SAGAR); este organismo es el encargado de verificar el impacto toxicológico, ecotoxicológico y la eficacia biológica de todos los insumos agrícolas. Se tuvo que regresar al campo y cumplir con sus requisitos, finalmente se otorgó el registro al *Probacil* y en septiembre del 2000 se lanzó al mercado.

Resumiendo, el *Probacil* es un producto biológico que ofrece ciertas ventajas:

- Permite un control prolongado de enfermedades del suelo producidas por Rhizoctonia y Fusarium.
- Promueve el desarrollo radicular y vegetativo que se refleja en incrementos en producción.
- Es de aplicación sencilla y versátil, en semilla, planteros, fondo del surco y riego por goteo.
- La cepa posee una alta adaptación a diferentes condiciones de pH, temperatura y humedad.
- Es un producto orgánico natural, no tóxico y su uso no implica riesgo alguno para la salud y el medio ambiente.

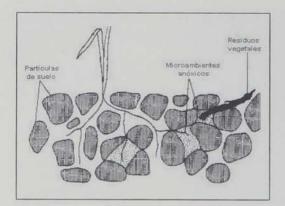
Las promesas de la biotecnología agrícola residen en aumentar la productividad y reducir costos, generar innovaciones, mejoras en los alimentos y conducir a prácticas agrícolas más ecológicas; contribuir, en suma, a la agricultura sustentable que utiliza los recursos con respeto al ambiente y sin comprometer a las generaciones futuras.

#### Notas

- 1. S. Shahai, AgBioForum 2,189 (1999).
- 2. FAO Declaración de la FAO sobre Biotecnología, http://www.ico.org/biotech/es/X438S.htm (2000).
- 3. J.W. Kloepper, TIBTECH 7, 39 (1989).
- 4. H. Glick, Can. J. Microbiology 41, 109 (1998).
- 5. N. Dashti, F. Zhang, R. Hynes y D.L. Smith, *Plant and Soil* **188**, 33 (1997).
- 6. R.F. Hall y J.J. Menn, Biopesticides: Use and Delivery (Humana Press, Totowa, New Jersey, 1999).
- 7. R.P. Lark, Plant disease and biocontrol FAQ. http://www.barc.usda.gov (1999).



## El suelo y sus habitantes microbianos: consideraciones ecológicas


Eduardo Valencia Cantero y Juan José Peña Cabriales

## El problema de la diversidad

Hay quien piensa en el planeta Tierra como en un superorganismo (Gaia) y el suelo sería algo así como su piel. La piel de un organismo es un organo complejo, y el suelo también lo es. El nombre "suelo" se derivó de la palabra latina solum, la cual significa piso o superficie. En Agronomía se define al suelo como la mezcla compleja de minerales, gases, líquidos, materia orgánica y organismos vivos que sustentan el crecimiento vegetal (figura 1). Los principales constituyentes minerales del suelo son arena, limo y arcilla (definidos según el tamaño de sus partículas, de mayor a menor dimensión). Entre más pequeñas sean las partículas minerales del suelo, tendrán una proporción área/volumen mayor y serán más reactivas porque es sobre la superficie donde se adsorbe el aqua v los nutrimentos y se llevan a cabo las reacciones químicas para la vida en el suelo. En un suelo fértil "ideal" aproximadamente el cincuenta porciento del espacio es poroso: la mitad está ocupada por gases y la otra mitad por líquidos. Las interfaces sólido-líquido y líquido-gas son los sitios donde preferentemente viven los microorganismos (figura 2); se abre la posibilidad de formar gradientes de nutrimentos, gases y pH en apenas volúmenes microscópicos, ya sea al interior de microporos colonizados o entre microporos contiguos; así se forman innumerables microambientes que ofrecen distintos nichos ecológicos. Pueden existir hongos que degraden materia orgánica, transporten nutrimentos o infecten plantas, lo mismo que bacterias que mineralicen carbono respirando oxígeno o nitratos, muy cerca de aquellas que fermentan.

Dirección electrónica: jpeña@ira.cinvestav.mx

El Dr. Juan José Peña Cabriales es investigador titular del Departamento de Biotecnología y Bioquímica de la Unidad Irapuato del Cinvestav. Eduardo Valencia Cantero es estudiante de doctorado de este departamento.



Flgura 1. Componentes del suelo.

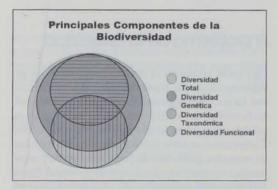



Figura 3. Principales componentes de la biodiversidad.

o de respiradoras de sulfato para las que el oxígeno es letal. Esto plantea el problema de la diversidad.

Definiremos diversidad biológica como el conjunto total de organismos y sus interaciones entre sí y con el medio¹ (figura 3). Estudiar la diversidad de microorganismos en el suelo es un reto formidable. Primero porque las definiciones clásicas de especie no se aplican a los microrganismos (muchos no tienen ciclo sexual) y tenemos que ajustarlas: aquí, especie es el conjunto de organismos que se parecen tanto entre sí como a sus progenitores. El aspecto morfológico en este caso no es muy útil para encontrar parecidos, ya que morfológicamente muchos microorganismos distintos se parecen demasiado entre sí. De esta forma tenemos que echar mano de las características fisiológicas para definir especies; otro obstáculo a salvar es el hecho de que un mismo micro-

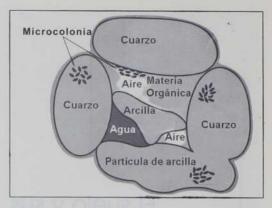



Figura 2. Interfaces sólido-líquido y líquido-gas.

organismo puede comportarse de maneras muy distintas ante cambios del ambiente. La necesidad de mantener condiciones controladas hace que los microorganismos deban ser aislados y estudiados en el laboratorio; sin embargo, se estima que sólo un 0.3% a 10% de las bacterias del suelo han sido cultivadas. Una vez que han sido considerados estos aspectos, se determinan las especies presentes y se calcula la diversidad taxonómica.

## Biodiversidad en el Bajío

Las dificultades metodológicas hacen que el estudio de la diversidad del suelo esté muy rezagada respecto del estudio de otros ambientes. La diversidad genética es el conjunto total de genes presentes en los microorganismos de un lugar determinado y expresan un potencial de las capacidades metabólicas de ese ambiente; la diversidad genética puede estimarse según el número de genomas distintos en un ambiente y es aún más amplia que la taxonómica, ya que el flujo de genes entre microorganismos de distintas especies es una realidad. No obstante, es más difícil de obtener y de organizar al profundizarse en el nivel de detalle. Una medición de la diversidad más operativa es la diversidad funcional, definida como el conjunto de capacidades metabólicas presentes en el suelo; es una información más gruesa que no repara en taxas y que no requiere grandes conocimientos acerca de los microorganismos, pero expresa las capacidades metabólicas de los microorganismos del suelo.

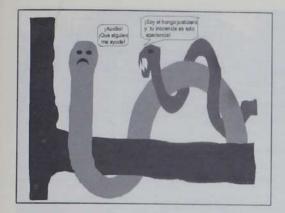



Figura 4. Biocontrol con el hongo Trichoderma spp.

Las tres mediciones de diversidad de que hemos hablado en su conjunto, y puestas en relación al ambiente, expresan la diversidad total. ¿Cuál de ellas es la más representativa?, ¿se pueden inferir a partir de una de ellas a las demás?, ¿qué tanta diversidad se está perdiendo en los suelos por el manejo agrícola? Estas interrogantes orientan una de las líneas actuales de investigación del laboratorio de Microbiología Ambiental de la Unidad Irapuato del Cinvestav, en la que se conjuntan técnicas de microbiología clásica y técnicas de biología molecular.

Nuestra área de estudio, el Bajío de Guanajuato, comprende una extensión de quinientos mil hectáreas de cultivo, en las que desde hace más de treinta años se ha mantenido una producción agrícola intensiva con base en una gran cantidad de insumos como son plaguicidas y fertilizantes nitrogenados, con una rotación cereal-cereal, cereal-hortaliza y cereal-leguminosa<sup>2</sup>. La repercusión de estas prácticas en la diversidad de microorganismos aún no se conoce.

El estudio de la ecología del suelo comprende también las relaciones de los microorganismos entre sí y con las plantas, las cuales pueden ser benéficas, deletéreas o neutras. Un caso muy ilustrativo se da también en el Bajío y es el de la relación del cultivo del ajo (Allium sativum) con el hongo fitopatógeno Sclerotium cepivorum y el hongo depredador de hongos Trichoderma spp. S. cepivorum es el causante de la pudrición blanca del ajo,

enfermedad que frecuentemente causa la pérdida total de las cosechas. La alternativa de control químico implica el uso del biocida bromuro de metilo que se aplica en altas dosis al suelo y que se volatiliza en la atmósfera. Sin embargo, la elevada toxicidad del bromuro de metilo y el grave efecto que tiene sobre la capa de ozono hacen que tenga sus días contados. Una alternativa de biocontrol se presenta a través de manejo del hongo *Trichoderma* spp. (figura 4).

El volumen circundante a la raíz de una planta (rizósfera) es un espacio muy competido; en condiciones normales las raíces secretan al suelo compuestos energéticos que estimulan el crecimiento de una flora de hongos y bacterias frecuentemente benéficos. Muchos de los intentos de introducción de microorganismos forasteros al suelo fracasan por la incapacidad del microorganismo introducido de vencer la competencia por espacios v nutrimentos de los microorganismos locales mejor adaptados, de manera que los introducidos más temprano que tarde son eliminados. Una salida a esta disyuntiva es la selección de microorganismos locales con las características deseadas. A través de un trabajo en colaboración con el Laboratorio de Expresión Genética de Hongos se han seleccionado cepas de Trichoderma originarios del Bajío, con grandes dotes como depredadores de S. cepivorum3 y en base a su huella genética se ha estudiado su capacidad de colonización en la rizósfera de ajo en condiciones naturales. Los resultados son muy estimulantes. De esta manera se prepara el estudio en condiciones controladas de laboratorio de la colonización de Trichoderma locales que han sido genéticamente transformados para aumentar su aptitud como depredadores de Sclerotium, y que aguardarán dentro de nuestros refrigeradores a que sea autorizada su liberación.

## Reciclaje de nutrimentos

En el suelo, los microorganismos alcanzan densidades poblacionales muy altas, entre los  $10^7\,\mathrm{y}\ 10^9\,\mathrm{organismos}$  por gramo del suelo. Eso les da una repercusión ambiental muy considerable. El reciclaje de nutrimentos en la biósfera es realizada por los microorganismos (figura 5) y constituyen la punta de la cúspide de la pirámide alimenticia, o simplemente son tributarios de los flujos de materia y energía del ecosistema global. Uno de los ciclos biogeoquímicos más estudiados es el del nitrógeno, debido

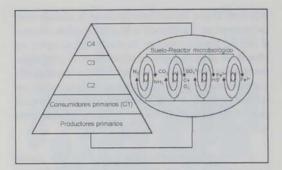



Figura 5, Reciclaje de nutrimentos por microorganismos.

a su importancia en la producción agrícola, y en últimas fechas por su importancia ambiental.

Por ejemplo, en el Bajío guanajuatense en 1997 se aplicaron ciento cincuenta mil toneladas de nitrógeno como fertilizantes<sup>4</sup> (aproximadamente el 15% de los fertilizantes empleados en el país), y cada año se requiere aumentar la dosis de fertilizantes sólo para mantener la producción. El empleo de la técnica de enriquecimiento isotópico de <sup>15</sup>N (isótopo estable de abundancia natural conocida)<sup>5</sup> ha mostrado que sólo un cincuenta porciento o menos del nitrógeno que se adiciona al sistema es recuperado en las plantas, o permanece en el suelo. El nitrógeno restante se pierde, ¿dónde queda ese nitrogeno? (figura 6).

En el Bajío, las prácticas agrícolas intensivas no incluyen el uso de los abonos verdes y se prefiere la quema de los residuos agrícolas a su incorporación en el suelo; lo cual ha ocasionado una drástica disminución de la materia orgánica en él. La materia orgánica en el suelo además de estimular la formación de canales, poros, y diversas poblaciones bacterianas, realiza una función de almacenamiento de nutrimentos, de manera que su pérdida va en detrimento de la capacidad del suelo para sustentar la vida vegetal; podría decirse que en casos graves el suelo sólo está actuando como sitio de anclaje de las raíces vegetales, y que los nutrimentos se tienen que adicionar, a semejanza de lo que se hace en un sistema de hidroponia. El uso del <sup>15</sup>N nos revela que aproximadamente un veinte porciento del nitrógeno se pierde arrastrado por el agua hacia el subsuelo (lixiviación) y que otro tanto se pierde por conversión a gases4 por

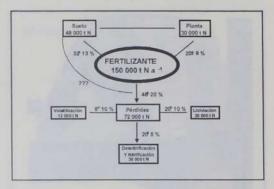
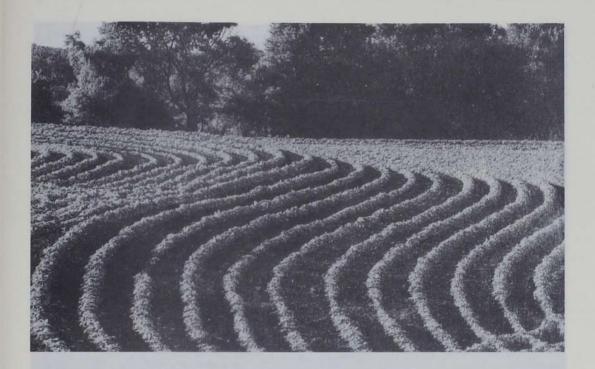




Figura 6. Pérdidas de nitrógeno en el Bajio Guanajuatense.

efecto de dos procesos bacterianos: desnitrificación (respiración bacteriana de nitratos) y nitrificación ("quema" bacteriana de nitrógeno de alta energía). Estos últimos dos procesos emiten a la atmósfera tanto  $N_2$  como gases del efecto invernadero (NO y  $N_2$ O) que también tienen poder de destrucción sobre la capa de ozono. Hechos como éstos nos hacen buscar alternativas para mejorar en términos integrales la práctica de la fertilización, y así agregar el nitrógeno en forma química, en el momento y en las cantidades indicadas para incrementar su aprovechamiento por los cultivos y disminuir de manera muy considerable pérdidas tanto económicas como desde el punto de vista ambiental.

El proceso contrario a la pérdida de nitrógeno por efecto bacteriano es la fijación de nitrógeno. El nitrógeno es por mucho el gas más abundante en el aire (setenta y ocho porciento), pero ésta es una forma química casi inerte y no asimilable para la inmensa mayoría de los seres vivos. La carencia de nitrógeno en microorganismos y plantas es algo así como morir de sed en un mar de agua... salada. Hasta la fecha todos los organismos que se sabe que tienen la capacidad de fijar nitrógeno son procariotes, células individuales sin núcleo, o sea bacterias y arqueas pero no hongos. Algunos de estos microorganismos fijan nitrógeno por su cuenta, pero los hay también que sólo lo hacen en asociación con plantas (casi siempre de la familia leguminosa), tal es el caso de las bacterias Rhizobium, Bradyrhizobium y Azorhizobium, que se introducen en el tejido de la raíz de las plantas formando una estructura semejante a un tumor que colonizan y en donde, a cambio de rico y energético carbono que toman de la planta, le retribuyen compuestos



de nitrógeno para su disfrute privado. A esto sí se le llama simbiosis. ¿Cuánto nitrógeno puede entrar así al Bajío?, mucho. En el caso de cultivos como el haba (Vicia faba) 500 kg/hectárea/año, alfalfa (Medicago sativa) 260 kg/ hectárea/ año o el frijol (Phaseolus vulgaris) 70 kg/hectárea/ año. Con todo, en ocasiones este nitrógeno no alcanza para reponer todo el nitrógeno que se saca del sistema vía cosecha, pero por supuesto es mucho mejor que si no estuviera. Para meiorar la fijación de este elemento en cultivos de interés se ha buscado asociar a estos cultivos con la bacteria correcta: ¿Cuál es la bacteria correcta?. mucho tiempo se pensó que aquella que tuviera una mayor capacidad para fijar nitrógeno, pero pocas veces la mejor fijadora de nitrógeno es la más apta para competir con las bacterias locales de la rizósfera por un espacio que le permita colonizar a la planta<sup>6</sup>. Pocas veces, por tanto, las bacterias introducidas en los cultivos se reflejan en la tasa de fijación de nitrógeno de manera significativa.

Es muy conocido que una bacteria fijadora de nitrógeno no puede colonizar a una planta si ésta no lo consiente, es decir la planta lleva el control de la simbiosis. La planta responde o no a señales bioquímicas, y en base a esto puede seleccionar qué bacterias la nodularán. Es de llamar la atención que la nodulación de plantas con cepas pobremente fijadoras de nitrógeno haya permanecido a través de los múltiples eventos de la selección natural que condena a la extinción a los sistemas menos eficientes. Una explicación muy razonable es que los linajes bacterianos pobres en fijación de nitrógeno estén realizando otro "servicio" a la planta que las hospeda. En el caso del frijol, una pista fue que la mayor parte del frijol en México (su centro de origen) se siembra en terrenos de temporal con escasez de agua<sup>7</sup>.

Nosotros hemos observado que algunas bacterias que son deficientes fijadoras de nitrógeno cuando la sequía empieza a afectar a la planta sintetizan un azúcar llamado trhealosa<sup>8</sup>. Este azúcar permite a las llamadas plantas de la resurrección de ambientes desérticos volver de situaciones de desecación extrema, y es empleado en la industria alimenticia para aumentar la vida de anaquel de frutas y verduras, o en investigaciones bioquímicas para estabilizar membranas. Es tal la diversidad de bacterias potencialmente noduladoras de frijol en las zonas semiáridas de México que probablemente sea mejor tratar de encontrar sus ventajas competitivas que intentar sustituirlas por bacterias extrañas a estos suelos.



Desconocemos mucho sobre la diversidad biológica de los microorganismos y su potencial para resolver problemas biotecnológicos, ya sea control biológico, fertilidad del suelo o resistencia a sequía; sin embargo, sí conocemos que la tendencia actual en la biósfera es a la pérdida de la biodiversidad. Por tanto, la exploración de los potenciales genéticos de los microorganismos también es una tarea a atender. En Guanajuato, por ejemplo, existe una serie de manantiales termales con una flora microbiológica no plenamente investigada; en fechas recientes estos organismos han sido útiles en nuestro laboratorio para la investigación de fenómenos disímbolos como la corrosión bacteriana de metales<sup>9</sup> y la biorremediación, pero definitivamente no podemos dejar que tan preciosos organismos se vayan sin haberlos conocido.



- 1. J.C. Zak et al., Soil Biol. Biochem. 26, 1101 (1994).
- 2. O.A. Grageda-Cabrera etal., J. Sustainable Agriculture 16, 75 (2000).

- 3. A. Flores, I. Chet y A. Herrera-Estrella, Curr. Genet. Jan 31, 30 (1997).
- 4. O.A. Grageda-Cabrera, F. Esparza-García y J.J. Peña-Cabriales, Enviromental biotechnology and cleaner process, E. Olguín, G. Sánchez y E. Hernández, Eds. (Taylor & Francis, EUA, 2000) p. 45.
- 5. G. Hardarson, y S.K.A. Danso, Aumento de la fijación biológica del nitrógeno en el frijol común en América Latina, J.J. Peña y F. Zapata, Eds. Arcal. 19 (1999).
- J. Vásquez-Arroyo et al., Plant and Soil 204, 147 (1998).
- 7. J.J. Jiménez, J.J. Zacarías y J.J. Peña Cabriales, Arcal. 1 (1999).
- 8. R. Farías-Rodríguez et al., Physiol. Plant. **102**, 335 (1998).
- E. Valencia-Cantero, Martínez-Romero y J.J. Peña-Cabriales, Memorias del XXXII Congreso Nacional de Microbiología, 43 (Sup 1), 316 (2001).

# El ecosistema de granos almacenados

Manuel Vázquez Arista

Un ecosistema se ha definido en forma arbitraria como la interacción de comunidades bióticas con su entorno abiótico. Odum¹ dividió todos los ecosistemas de la Tierra en cuatro clases, que difieren por la cantidad del flujo de energía consumido anualmente: (1) ecosistema no dependiente de la energía solar (8,400 KJ/m²); (2) ecosistema dependiente de la energía solar (84,000 KJ/ m2); (3) ecosistema humano dependiente de la energía solar (840,000 KJ/m²) y (4) ecosistema urbano-industrial dependiente del petróleo (8,400,000 KJ/m²). El ecosistema de granos almacenados pertenece al ecosistema humano dependiente de la energía solar, está compuesto por organismos autótrofos, granos y semillas, que sirven como fuente de energía y a su vez como hábitat de muchas especies heterótrofas como son los insectos, ácaros, hongos y bacterias.

Existe una gran diversidad de ecosistemas de granos almacenados. Algunos sistemas están formados simplemente por canastas, cajas u otros recipientes pequeños con granos básicos como sucede en el medio rural de Africa, India, México, América Central y América del Sur. Sin embargo, en países en desarrollo también se acostumbra guardar maíz o frijol en sacos estibados en soportes de madera o bien en estructuras especiales construidas del mismo material (figura 1). También en el medio rural de países americanos se encuentran estructuras hechas de adobe (figura 2) o alguna clase de silos localizados dentro o fuera de la casa del agricultor (figura 3). Hay una gran variedad de sistemas de almacenamiento subterráneo como los antiquísimos de

El Dr. Manuel Vázquez Arista es investigador adjunto del Departamento de Biotecnología de Plantas de la Unidad Irapuato del Cinvestav

Dirección electrónica: mvazquez@ira.cinvestav.mx

China, los tradicionales matmora en el Norte de Africa, los patra en la India y los silos de plástico en Brasil. Existen estructuras de almacenamiento de barro con capacidad de 1.000 a 1.500 toneladas de grano, como en Australia y los silos cónicos de Kenia. Estructuras de concreto más modernas con capacidad de 5.000 a 10.000 toneladas de almacenamiento de grano se pueden encontrar en Argentina y México. En general, la mayoría de los sistemas de almacenamiento de gran capacidad pertenecen al gobierno, cooperativas o particulares. También se consideran ecosistemas del almacenamiento los sistemas de transporte en las bodegas; el almacenamiento refrigerado, casero o comercial; los sistemas de transportación de granos como barcazas, barcos, camiones, tren v aun las pilas formadas en el suelo sin protección. Todos estos sistemas de almacenamiento requieren de energía, va sea para la operación de los equipos de aireación, secado y transporte, al igual que de derivados del petróleo como los insecticidas.

#### Interacción de ecosistemas

Mientras que en los países en vías de desarrollo se dan soluciones a los problemas de granos almacenados conforme se presentan, analizando únicamente un ecosistema en particular, en los países desarrollados se dan soluciones analizando, además, otros ecosistemas relacionados con el almacenamiento de productos agrícolas. Para entender este tipo de interacciones se darán algunos ejemplos.

(1) En el sur de China los agricultores se enfrentan al problema de tener un sistema en donde el trigo es sembrado entre dos ciclos de arroz en un mismo terreno. Cuando las plántulas de arroz son trasplantadas, el terreno debe estar inundado. Idealmente esta inundación deberá quedar en reposo al menos una semana antes del trasplante para asegurar que el lepidóptero Chilo plejadellos Zincken, una plaga importante de trigo, se haya eliminado. Entonces al agricultor se le presentan dos alternativas: omitir el periodo de reposo o bien cosechar el trigo antes de que esté suficientemente seco para su almacenamiento. Si se decide por la segunda opción, se incrementarán las pérdidas por el desarrollo de hongos de almacén; si es por la primera, se incrementarán las pérdidas en el siguiente cultivo de trigo debido al ataque del lepidóptero.



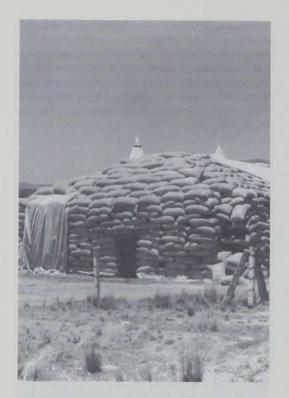
Flaura 1. Maíz en mazorca (Yucatán).

(2) En las regiones de EUA donde se produce maíz y cacahuate, el hongo Aspergillus flavus se convierte en un problema durante el almacenamiento con pérdidas de peso y calidad; en muchas ocasiones, debido a la producción de sus micotoxinas, se hace necesario la eliminación total de estos productos agrícolas. Además, la inoculación del hongo en el campo, en ciclos posteriores, es llevada a cabo por el insecto de almacén Carpophilus hemipterus (L).

(3) En las zonas productoras de frijol (*Phaseolus vulgaris*) de México, los coleópteros *Acanthoscelides obtectus* (Say) y *Zabrotes subfasciatus* (Boheman) se desplazan de su hábitat natural (un agroecosistema precosecha) a los campos de frijol y de ahí al ecosistema de granos almacenados. En el campo la hembra de este coleóptero deja sus huevecillos en las vainas verdes y las larvas del primer instar las penetran para continuar su desarrollo dentro del grano. De esta manera, estos insectos son transportados al almacén donde su progenie infestará a otros granos sanos.



Figura 2. Maíz desgranado (Yucatán).


(4) Los coleópteros Rhyzopertha dominica (F) y Prostephanus truncatus (Horn), que probablemente pertenecen a un ecosistema forestal, se han encontrado infestando, el primero, trigo y arroz, y el segundo, maíz. Estos coleópteros, conocidos como barrenadores, entran primero al sistema precosecha de los granos básicos, para luego ser transportados, una vez cosechados, al ecosistema de los granos almacenados. De acuerdo a lo anterior, se sugiere que la mayoría de los insectos que sobreviven en el ecosistema de los granos almacenados provienen de otros ecosistemas. Este movimiento de insectos, plaga de sus hábitats naturales a través de dos ecosistemas, ocurre en todas partes del planeta.

#### Sucesiones ecológicas

Una comunidad es un conjunto de poblaciones de varias especies compartiendo el mismo hábitat. Según Krebs²,

esta comunidad tiene cinco atributos cuantificables: (1) diversidad de especies, plantas y animales que viven en una comunidad; (2) forma de crecimiento de las especies y el tipo de estructura que tendrán; (3) predominancia de algunas especies que ejercen más influencia que las otras de acuerdo a su número, tamaño, u otra característica; (4) relativa abundancia de las diferentes especies en una comunidad y (5) estructura trófica, o el consumo y flujo de energía. En el ecosistema de granos almacenados se identifican perfectamente tres comunidades: (1) insectos, que incluyen los que causan pérdidas y los que son predadores, parasitoides y carroñeros; (2) hongos, incluyendo los que pueden competir en una tensión de oxígeno atmosférico y los que sólo compiten en una atmósfera reducida de oxígeno; (3) ratas y aves.

En lo que concierne a los insectos, para predecir la especie que estará presente en un ecosistema de granos almacenados se debe considerar el tipo de grano, el tiempo de la cosecha y su estilo de vida. La composición y el porcentaje de las impurezas o material extraño presente en el grano cosechado también es un buen indicador para predecir las especies de insectos. Por ejemplo, si se tiene un grano con bajo porcentaje de impurezas, las especies de insectos que se espera estén presentes son aquellos capaces de perforar el grano sano (insectos primarios), cuyos estadíos inmaduros (larvas y pupas) pasan gran parte de su vida dentro de los granos y se alimentan del germen. En México, los insectos primarios para el maíz almacenado son los coleópteros Sitophilus zeamais Motschulsky, P. truncatus y el lepidóptero Sitotroga cerealella (Oliver); mientras que para frijol, encontraremos a los coleópteros A. obtectus y Z. subfasciatus. Si el grano es cosechado y manejado en forma inadecuada, disminuirá la calidad del producto agrícola con el incremento del porcentaje de impurezas y por lo tanto la primera infestación que se espera será de insectos secundarios, tales como algunos coleópteros de las familias Tenebrionidae, Cucujidae y Silvanidae. Estos mismos insectos también aparecen cuando el grano ha sido severamente dañado por un insecto primario, además de aquellos insectos que se alimentan de insectos muertos como son algunas especies carroñeras de la familia Dermestidae. Con la actividad desarrollada por la alta concentración de las comunidades de insectos se incrementará el contenido de humedad del grano, con lo que se propiciará la migración de ésta y la presencia de comunidades de hongos que, una vez establecidas, fomentarán la presencia de insectos que se alimentan de ellas como algunas especies de coleópteros de la familia Mycetophagidae.



La comunidad de hongos en el ecosistema de granos almacenados es más compleja que la de insectos, ratas y aves. La presencia de estos microorganismos está regulada por la combinación de tensión de oxígeno, el contenido de humedad del grano (actividad acuosa) en equilibrio con la humedad relativa del ambiente y el tipo de producto agrícola. Por ejemplo, en granos con alto contenido de almidón (trigo, cebada, avena, arroz, centeno, maíz, sorgo, etc.), humedad relativa de 65-70% (contenido de humedad de 13-14%) y tensiones de oxígeno cercanas a la atmosférica, solamente podrán encontrarse Aspergillus holophilicus. Con un pequeño incremento de la humedad relativa a 71-75% (contenido de humedad de 14.5-15%), otras 3 especies de hongos germinarán, Aspergillus restricticus, Aspergillus glaucus y Wellemia sebi. A humedad relativa de 75-80% (contenido de humedad de 15.5-16-0%), Aspergillus flavus y Penicillium spp se añadirán a la comunidad. Sin embargo, si la tensión de oxígeno decrece, estos hongos filamentosos de almacén no se desarrollarán y en su lugar predominarán las levaduras.

En América Latina, según la información disponible hasta el momento, los roedores más importantes en el ecosistema de granos almacenados son los roedores cosmopolitas Rattus rattus, Rattus norvegicus y Mus musculus, los cuales pertenecen a la familia Muridae. Los roedores son capaces de producir pérdidas de consideración en productos agrícolas: se habla de un 50% en la India; transmisión de enfermedades al hombre: tifo, peste, salmonelosis, triquinosis, poliomielitis, encefalitis, etc.; contaminación con pelos, excrementos y orina; y destrucción en los sistemas de almacenamiento. Estos roedores, junto con los humanos y los animales domésticos, son los últimos usuarios del ecosistema.

Las necesidades y preferencias de la comunidad de mamíferos cambian frecuentemente debido a sus requerimientos de orden nutritivo o simplemente de sabor en el producto final. Por ejemplo, un segmento de la población de los humanos busca alimentos bajos en contenido de grasa; harinas que contengan cierta cantidad de fibra; que estas harinas den una pasta más nutritiva; un sabor y textura especial del frijol cocinado; alimentos sin residuos de insecticidas y hormonas sintéticas; o bien alimentos de productos no transgénicos.

#### Dinámica poblacional

Una población está formada por un grupo de individuos de una especie que habitan una localidad. El crecimiento ideal de una población se puede expresar por una ecuación diferencial que describe una curva sigmoidal o logística. La fase estacionaria de esta curva se alcanza cuando la población se incrementa a la capacidad del medio ambiente. Sin embargo, esta capacidad en un ecosistema puede cambiar. Un ejemplo es la presencia de hongos de almacén junto con los coleópteros Tribolium castaneum Herbst y Tribolium confusum Du Val. A medida que aumenta el número de estos insectos en el sistema de alma-cenamiento, la concentración de compuestos antifúngicos (quinonas), secretados por éstos, se incrementará y por lo tanto la población de los hongos disminuirá. En consecuencia, la capacidad del medio ambiente para mantener a los hongos será menor si el sistema está infestado con dichos coleópteros. Muchas especies de hongos y algunas de insectos, cuando se presentan en condiciones naturales de precosecha y almacenamiento, producen otro tipo de curva, tipo "J".



Este tipo de curva de crecimiento se observó en Manitoba cuando se almacenaron 13.6 t de trigo con un "foco de calentamiento" producido por una población de A. flavus. Esta población se incrementó en forma acelerada y posteriormente disminuyó hasta cero. La razón de la desaparición de esta población fue el incremento en temperatura (64°C) producido por la actividad natural de ésta. También en Nantes, Francia, se observó este tipo de fenómeno cuando se almacenó maíz húmedo recién cosechado, el cual estaba infestado por varias especies de hongos de campo del género Cephalosporium, Cladosporium y Verticillum, así como de los géneros Mucor y Penicillium, que son hongos de almacén. Hubo un crecimiento exponencial rápido de la población, sin presencia de fase lag, hasta su disminución estrepitosa.

#### Nivel celular

Para entender la adaptación tan exitosa de los insectos al ecosistema de granos almacenados, que es un ambiente xerófilo, es necesario analizarlos a nivel celular. Las características morfológicas, fisiológicas y bioquímicas de estos insectos están regidas por la actividad de células, ya sea en forma individual o de grupo. El manejo adecuado de los insectos plaga y de aquellos que son benéficos se puede mejorar sustancialmente si se conoce la función de ciertas estructuras celulares. Por ejemplo, la mayoría de los coleópteros asociados con el almacenamiento de

granos tiene un sistema criptonefridial, que es una agregación de los tubos de Malpighian en el intestino posterior y se encuentran envueltos por la membrana perinéfrica. Este arreglo celular es la última oportunidad que tiene el insecto para reabsorber los restos de agua presente en el alimento ya digerido. Este tipo de órganos absorbentes de agua se han descrito en algunas especies de la familia Tenebrionidae, Dermestidae y últimamente en la Bostrichidae (figura 3).

Los insectos de almacén tienen células para la recepción y producción de compuestos reguladores que pueden alterar su desarrollo y reproducción. Por ejemplo, T. castaneum produce cetonas aromáticas capaces de inhibir la prostaglandina sintetasa de insectos, con lo cual se puede regular el comportamiento reproductor de este coleóptero. Las glándulas maxilares del último estadío larvario del lepidóptero Ephestia kuehniella Zeller, insecto secundario de almacén, depositan, a un lado de los hilos de seda característicos de esta especie, una secreción que regula el número de insectos en un sistema cerrado y su dispersión en el mismo. Además, las hembras adultas reaccionan en forma inversa a las concentraciones de esta secreción, depositando más huevecillos a bajas concentraciones. Machos del genero Cryptolestes sp. familia Cucujidae, del genero Oryzaephilus sp., familia Silvanidae, así como R. dominica y P. truncatus, familia Bostrichidae, poseen ciertas células que producen feromonas de agregación capaces de atraer a ambos sexos de su misma especie.

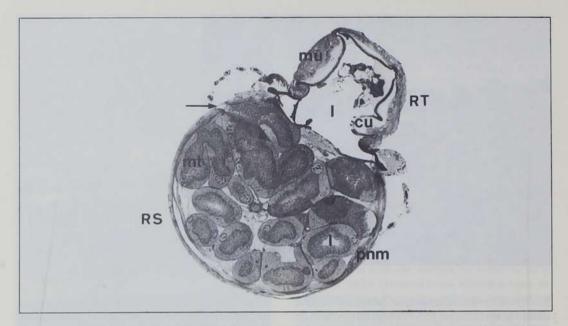
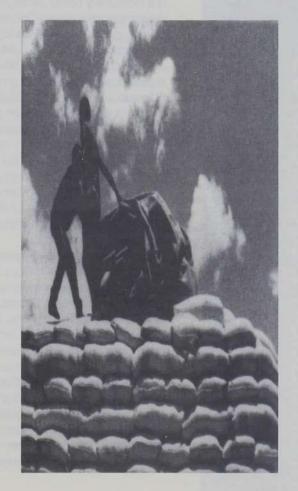



Figura 3. Sistema criptonefficial de *Prostephanus truncatus*. RS, saco rectal; mt, tubos de Malpighlan; pnm, membrana perinéfrica; L. lumen; RT tubo rectal; cu, cutícula; mu, músculo. Barra = 100 mm.

Muchos de los insectos que se encuentran asociados al ecosistema de granos almacenados producen secreciones que alteran el comportamiento de otras especies. Las más conocidas de estas sustancias son las quinonas producidas por especies del genero *Tribolium* sp. Otras secreciones son usadas por parasitoides para localizar insectos de almacén; por ejemplo, las secreciones maxilares de *E. kuehniella* también producen una kairomona que atrae al hymenóptero parasitoide *Venturia canescens* (Gravenhorst), iniciando movimientos de oviposición en las larvas de este lepidóptero y de otros de la misma familia como *E. elutella* (Huebner), *E. cautella* (Walker) y *Plodia interpunctella* (Huebner).

#### Nivel político

La política juega un papel muy importante en el ecosistema de granos almacenados. Por ejemplo, en EUA se efectúan modificaciones en este ecosistema debido a cambios en las regulaciones establecidas por el Federal Grain Inspection Service y de precios por la Farm Bill, de tal manera que el gobierno regula, entre otras muchas


cosas, los subsidios en el precio de los granos, la normalización de su calidad, la tolerancia de residuos de insecticidas y micotoxinas, todo lo cual va a tener un impacto en el manejo de este ecosistema en el país. Muchos de los cambios que se realizan son modificaciones simples a las normas de calidad, como es la separación de granos quebrados de las impurezas en la comercialización de maíz con la aplicación de incentivos y castigos, mejorando el aspecto económico de los agricultores. Con estas medidas los productores de granos se motivan para emplear mejor equipo durante la cosecha o el almacenamiento. Así, por ejemplo los productores de cebada equipan sus almacenes con sistemas de aireación computarizados, con el objeto de mantener un control riguroso del contenido de humedad y evitar la germinación antes de su comercialización, y obtienen excelentes bonificaciones en el proceso de venta. En general, el gobierno regula las actividades de siembra, cosecha, almacenamiento y distribución de los granos. En cuanto a la comercialización, ese país utiliza el excedente de granos como moneda de cambio en los tratados realizados con los países menos desarrollados, ejerciendo una dependencia alimentaria.

En contraste, nuestro país carece actualmente de un organismo regulador, el cual desapareció debido a las múltiples anomalías que venía arrastrando desde administraciones anteriores, y se había convertido en una carga muy pesada para la administración pública, además de que siempre manejó el ecosistema de granos almacenados como un ecosistema aislado.

Por último, en México no habrá interés en el almacenamiento de granos mientras no seamos autosuficientes y tengamos excedentes que guardar. Para ello tenemos antes que hacer frente, en forma sistemática, a los problemas serios de erosión que nuestro país padece y falta de agua que limitan la producción de cualquier producto agrícola. Es necesario hacer notar que hay un sector de la población mexicana que siempre ha estado sin atención, el medio rural, en donde hay comunidades que todavía subsisten de la siembra, cosecha y almacenamiento de maíz y frijol. Por lo tanto, se requiere que el gobierno instrumente programas para mejorar el ecosistema del almacenamiento de estos productos básicos.

#### **Notas**

- 1. E.P. Odum, Ecology and Our Endangered Life-Support Systems (Sinauer, Suderland, Mass., 1993).
- C.J. Krebs, Ecology (Harper & Row, Nueva York, 1972).





# publicación bimestral con artículos de divulgación y notas sobre avances científicos y tecnológicos. Los artículos o notas que se propongan para ser publicados en *AyP* deben enviarse por triplicado a : Director Editorial, Avance y Perspectiva Cinvestav Apdo. Postal 14-740 07000 México, D.F. Tel. 5747 3800 ext. 6737, 6738 y 6739 Fax: 5747 3746 avance@mail.cinvestav.mx

Los artículos y notas recibidos serán evaluados por especialistas seleccionados por el Consejo Editorial. Los artículos de divulgación deben dar cuenta de los logros o avances obtenidos en las especialidades que se cultivan en el Cinvestav. Se buscará que su contenido sea ameno y novedoso. Deberán ser impresos a doble espacio, con márgenes amplios y extensión máxima de 20 cuartillas. El lenguaie debe ser accesible a estudiantes de licenciatura sin perjuicio de la información científica o académica contenida en el artículo. Cuando sea necesario el uso de tecnicismos, deberá explicarse su significado con la amplitud conveniente. Se recomienda la inclusión de recuadros que aclaren el significado de conceptos de difícil comprensión. Dentro de lo posible, se evitará el uso de fórmulas y ecuaciones. Las referencias y notas bibliográficas aparecerán completas al final del artículo; cuando se mencionen en el artículo deberán indicarse con un superíndice y estar numeradas por orden de aparición.

La Revista Avance y Perspectiva (AyP), órgano de difusión del Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), es una

Deberán enviarse los originales de las figuras, gráficas o fotografías que acompañen el texto. Las figuras y gráficas se deben preparar por computadora a línea sin pantallas o con tinta china sobre papel albanene con buena calidad. Los autores recibirán las pruebas de galera de sus artículos con la debida anticipación. Sin embargo, para evitar retrasos en el proceso de publicación, los autores que usen un procesador de textos en computadora, además del texto impreso en papel deben enviar su texto grabado en un diskette. Los procesadores de texto útiles para este propósito son: *Microsoft Word, Word Perfect, etc.* guardando el documento con la extensión DOC. Las figuras y gráficos pueden ser grabadas como imagen JPG, TIF, BMP, GIF, etc. Recomendamos enviar los archivos (texto y figuras) en formato de PC, en diskette, zip, CD Rom o por correo electrónico como un anexo (attachment).

### Mitos y realidades de las aflatoxinas

Doralinda Guzmán de Peña

Los mitos son narraciones tradicionales de autores desconocidos que tienen bases históricas, que generalmente han servido para explicar algunos fenómenos de la naturaleza, el origen del hombre, o las costumbres y ritos religiosos de los pueblos. Se caracterizan porque son historias que no tienen fundamento científico y en términos generales la palabra "mito" se asocia a algo que no corresponde a la realidad. En esta era de la comunicación el ser humano modifica la información recibida verbal o impresa sobre diversos temas para que tenga un mayor impacto en la sociedad: en la actualidad es muy común escuchar o leer historias ficticias o mitos sobre temas científicos de suma importancia.

Uno de estos temas es el de las aflatoxinas, substancias producidas por algunos hongos, que pueden contaminar granos básicos y alimentos procesados y almacenados. Son substancias generadas por hongos microscópicos en productos alimenticios que al ser ingeridas son capaces de producir reacciones tóxicas, inducir cáncer hepático, causar mutaciones y muerte en animales superiores¹ y representan un riesgo potencial para la salud humana².

Estas substancias son motivo de estudio en el Laboratorio de Micotoxinas de la Unidad Irapuato del Cinvestav. Los enfoques en su investigación involucran métodos analíticos que permitan su detección y cuantificación en diferentes granos básicos, su incidencia en ellos, la ecología de los hongos que las producen en el campo y en el almacén, así como estudios sobre los mecanismos de regulación de la síntesis de estas toxinas

La Dra. Doralinda Guzmán de Peña es investigadora titular del Departamento de Biotecnología y Bioquímica de la Unidad Irapuato del Cinvestav

Dirección electrónica: dguzman@ira.cinvestav.mx

Tabla 1. Toxinas producidas por diferentes géneros de hongos en la naturaleza.

| Fusarlum    | Penicillium | Asperegillus |
|-------------|-------------|--------------|
|             | Micotoxinas |              |
| Zearalenona | Ochratoxina | Aflatoxinas  |
| Fumonosinas | Patulina    | Ochratoxina  |
| Tricoteceno | Patulina    |              |

por los hongos productores. De igual manera, se mantiene una relación con los agricultores que podrían verse afectados por estas toxinas: productores de maíz y sorgo, porcicultores y avicultores. Esta última actividad nos ha permitido conocer algunos mitos que circulan sobre este tema.

#### Primer mito

Uno de los mitos mas difundido es "Todos los granos básicos y alimentos con moho tienen aflatoxinas". Está información está muy lejos de la realidad, va que existen cientos de tipos de hongos microscópicos conocidos como mohos v sólo un grupo reducido de éstos tienen la capacidad de producir estas substancias. El grupo de hongos del género Fusarium, que son reconocidos como los mohos morados, violeta o color rosa que crecen en las tortillas cuando hav humedad v frío, no producen aflatoxinas; sin embargo, algunos pueden producir otras toxinas (tabla 1). Los hongos del género Penicillium, conocidos como mohos verdes o grises pueden producir antibióticos y también otras toxinas (tabla 1) pero tampoco aflatoxinas. Finalmente, los mohos verde-amarillentos que pertenecen al grupo Aspergillus flavus son los únicos capaces de producir aflatoxinas; a este grupo pertenecen las especies A. parasiticus y A. nomius<sup>3</sup>. No obstante, se debe enfatizar que no todos los aislados de estos hongos producen aflatoxinas. Por ejemplo, se ha demostrado que de 250 aislados obtenidos de granos y suelos sólo un pequeño porcentaje fue capaz de producir la toxina3. Un hongo que definitivamente no tiene la capacidad de producir aflatoxina es el huitlacoche. De ahí que no todo los alimentos contaminados con moho tienen aflatoxinas. Sin embargo, este mito afecta económicamente a los porcicultores y avicultores porque al creerse que todos los hongos presentes son peligrosos se utilizan funquicidas o fungístatos.

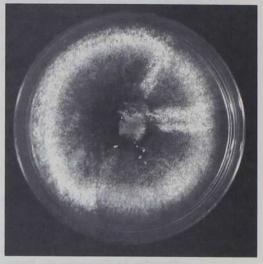



Figura 1. Aspergillus parasiticus. Hongo productor de aflatoxinas.

#### Segundo mito

Otro mito que frecuentemente se escucha o se lee en los periódicos es que toda la producción de maíz está contaminada con aflatoxinas porque "cuando una muestra de grano tiene aflatoxina, toda la producción del grano del que proviene la muestra está contaminada"; la complejidad del análisis de las aflatoxinas en grandes volúmenes de grano va más allá de este mito. En primer lugar, para determinar si los granos básicos o los alimentos almacenados están contaminados con aflatoxinas, éstos deben ser sometidos a un análisis químico y para ello es necesario tomar muestras representativas del lote de alimento en cuestión. Generalmente los alimentos son analizados para determinar indicadores de calidad como son, en el caso de los granos básicos, grano dañado, grano quebrado, impurezas, porcentaje de humedad, etc.; sin embargo, todos estos eventos ocurren de manera más homogénea, es decir, que tienen una distribución más generalizada o normal4; en cambio en el caso de las aflatoxinas, su distribución en los granos es altamente errática y en pequeños porcentajes del grano de un lote, por lo que es común encontrar altas variaciones en las concentraciones de aflatoxinas en las muestras representativas de un lote de grano4. Existen reportes científicos que indican que un solo grano de maíz puede contener hasta 1000 µg de aflatoxina, nivel que permitiría evaluar

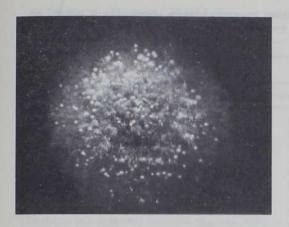



Figura 2. Aspergillus candidus no produce aflatoxinas, Alsiado de maiz blanco.

a un lote determinado como altamente contaminado. Estos eventos determinan que el análisis de aflatoxinas presente una gran complejidad.

Esta complejidad disminuye cuando se realiza un muestreo con numerosas porciones de un lote dado, tomadas de diferentes puntos del lote ( 10 a 15 puntos). Existen otros factores que participan en la sensibilidad de las determinaciones del contenido de aflatoxinas: tamaño de la muestra del molido grueso, tamaño de la muestra del molido fino y el número de repeticiones de la cuantificación de las aflatoxinas. Así que a mayor cantidad de muestra molida de los dos tamaños y a mayor número de repeticiones en la cuantificación, menor error total y mayor confiabilidad del análisis.

En un estudio realizado en el Laboratorio de Micotoxinas de la Unidad Irapuato en 1989, en maíz blanco producido y almacenado en Tamaulipas, se cubrieron todos los factores de muestreo, submuestreo y molienda descritos anteriormente de acuerdo a Mergruen<sup>4</sup>. De cada bodega se tomaron por lo menos dos muestras y como máximo tres de 5 a 7 kilos cada una. Fueron molidas en su totalidad y submuestreadas por medio de 5 cuarteos cada 50 gramos de muestra. De cada muestra se formaron 15 submuestras y se realizaron 15 análisis de extracción y cuantificación de aflatoxinas. Como se puede observar en la tabla 2 los niveles de contaminación en una misma bodega cambian de un punto a otro en un

100%. En Valle Hermoso la muestra "A" alcanzó un nivel promedio de 40.6  $\mu$ g/kg, en contraste con el punto "B" del mismo grano y en el mismo almacén, el cual tuvo un nivel promedio de 9.2  $\mu$ g/kg.<sup>5</sup>. Así se determinó que en 1989 de 25 muestras de maíz blanco producido en Tamaulipas el 48% presentó contaminación con aflatoxinas y de las doce muestras 6 con niveles de 53-133  $\mu$ g/Kg. y las otras 6 con niveles de 13 a 30  $\mu$ g/Kg. Estos datos ilustran claramente que no se debe penalizar un lote de grano o una producción sin antes tener resultados analíticos confiables sobre los niveles y la distribución de la contaminación.

#### Tercer mito

Con respecto al impacto que estas toxinas tienen en la salud pública se ha desatado otra serie de mitos, y debido a que no se ha demostrado que las aflatoxinas causen directamente la muerte en humanos es frecuente escuchar "la contaminación de aflatoxina en los alimentos para consumo humano no es tan importante". La realidad contundente es que una de las cuatro aflatoxinas. la B1. es la sustancia más cancerígena que existe en la naturaleza<sup>1</sup>, ya que dosis tan bajas como de 1µg/kg de alimento fueron capaces de inducir cáncer hepático en el 10% de una población animal susceptible. Como se puede ver en la tabla 3, las dosis capaces de inducir tumores pueden llegar a ser de 30 μg/kg de la dieta. También se ha encontrado que algunas ratas han llegado a presentar tumores un año después de haber ingerido una dosis muy elevada de aflatoxina seguida de alimentación no contaminada<sup>6</sup>. Con respecto a la sensibilidad de las ratas, existen datos que indican que las ratas hembras son mas resistentes que los machos a ambos efectos de la aflatoxina, el tóxico y el carcinogénico6; esta tendencia se observa aún en dosis bajas de aflatoxina B1.

Otros factores que pudieran influir sobre la respuesta a la actividad de las aflatoxinas en el hombre se han estudiado en experimentos con animales. Se analizó la posible influencia de la malnutrición proteínica, tan importante en diversas áreas del mundo donde el cáncer hepático es común. Estudios en animales con deficiencia de metionina demostraron que este aminoácido confería una protección contra los efectos tóxicos de aflatoxina B1 ya que animales con deficiencia de metionina presentaban una alta frecuencia de tumores<sup>6</sup>.

Tabla 2. Niveles de contaminación de aflatoxina en maíz blanco contenido a granel en una bodega de Valle Hermoso, Tamaulipas<sup>5</sup>.

| Submuestras |           | Nivel de Aflatoxina µg/l | kg        |
|-------------|-----------|--------------------------|-----------|
| Analizadas  | Muestra A | Muestra B                | Muestra C |
| 1           | 40.6      | 20.3                     | 25.3      |
| 2           | 40.6      | 16.9                     | 20.3      |
| 3           | 40.6      | 14.5                     | 16.9      |
| 4           | 40.6      | 14.5                     | 16.9      |
| 5           | 50.2      | Neg.                     | Neg.      |
| 6           | 50.2      | Neg.                     | 20.3      |
| 7           | 40.6      | Neg.                     | 20.3      |
| 8           | 50.2      | 14.5                     | 16.9      |
| 9           | 50.2      | Neg.                     | 20.3      |
| 10          | 40.6      | 14.5                     | 20.3      |
| 11          | 33.8      | 14.5                     | 20.3      |
| 12          | 33.8      | Neg.                     | 16.9      |
| 13          | 40.6      | 14.5                     | 16.9      |
| 14          | 33.8      | 14.5                     | Neg.      |
| 15          | 40.6      | Neg.                     | Neg       |

Los resultados obtenidos de estudios en animales pueden ser relacionados a la cancerigenosidad de la aflatoxina en el hombre de la siguiente manera:

- (a) la aflatoxina B1 es carcinogénica en muchas especies animales, incluyendo primates,
- (b) es un potente carcinógeno en algunas especies,
- (c) se ha demostrado una relación de dosisrespuesta,
- (d) los tumores se producen más rápidamente en machos y en jóvenes.

Es una realidad que en algunos países de Asia y Africa una de las principales causas de muerte es el cáncer de hígado (hepatocarcinoma). Esta enfermedad causa al menos 300,000 muertes al año con una incidencia, en algunas áreas del país, de aproximadamente 100 casos por cada 100,000 personas al año. Es la principal causa de muerte en hombres después del cáncer de esófago y estómago². Durante los últimos 30 años se han realizado esfuerzos para investigar la asociación entre exposición a

la aflatoxina y hepatocarcinoma humano, y los estudios epidemiológicos han encontrado un aumento de la incidencia de cáncer en regiones donde ha aumentado la ingestión de alimentos contaminados con aflatoxina<sup>2</sup>.

Estudios recientes con biomarcadores moleculares para aflatoxina han confirmado la interacción entre ingestión y cáncer hepático. La aflatoxina B1 ha sido encontrada en orina de 43 pacientes como aflatoxina M1, en un estudio de 83 pacientes y en 30 de 60 pacientes como aflatoxina unida a albúmina en suero<sup>2</sup>. De igual manera, la correlación entre exposición de aflatoxina y cáncer hepático se ha ilustrado con estudios moleculares recientes que indican que las poblaciones expuestas a altos niveles de ingestión de aflatoxinas en China y Sudáfrica tienen mutaciones en el gene supresor de tumores p53 con transversiones de G-T en el codon 249. Estas circunstancias indican que la correlación positiva entre ingestión de alimentos contaminados con aflatoxinas e incidencia de cáncer hepático debe ser suficiente para aceptar que la presencia de aflatoxinas en los alimentos representa un riesgo potencial al cual la población humana no debe de ser expuesta.

Tabla 3. Dosis de aflatoxina que indujeron tumores<sup>1</sup>.

| Especie animal | Dosis<br>µg/kg<br>dieta | Duración de observación | No de tumores |
|----------------|-------------------------|-------------------------|---------------|
| Patos          | 30                      | 14 meses                | 8/11          |
| Truchas        | 8                       | 1 año                   | 27/65         |
| Monos          | 1000-8000               | 2 años                  | 3/42          |
| Ratas          | 100                     | 54 semanas              | 28/28         |
| Ratones        | 150                     | 80 semanas              | 0/60          |

#### Cuarto mito

En el caso de la población mexicana este riesgo potencial se magnifica si consideramos que el maíz es uno de los substratos mas expuestos a la contaminación por los hongos del grupo *A. flavus* y que además es el alimento más popular en México. En nuestro país se consumen 348 g de maíz como tortilla al día per capita y en zonas rurales el consumo llega a ser de 600 g per capita al día. En la dieta representa el 38.8% de proteína, el 45.2 % de calorías y el 49.1% del calcio?

La importancia de este alimento en nuestra sociedad es incuestionable y cuando hace algunos años se publicó que "todas las tortillas tenían altos niveles de contaminación con aflatoxina y que era peligroso comerlas", la población se sintió atemorizada. Esta exageración surge de la discrepancia de los resultados generados por diferentes grupos de investigadores durante el estudio del efecto de la nixtamalización, proceso tradicional mexicano para hacer tortillas, sobre la contaminación de aflatoxina en maíz.

La inquietud por saber si la nixtamalización destruía a la aflatoxina presente en maíz surgió desde 1969 cuando Ulloa-Sosa y Schroeder publicaron que cerca del 70% de la aflatoxina era removida durante este proceso<sup>8</sup>, pero Arriola et al.º indicaron que la nixtamalización no reducía la contaminación de aflatoxina. Posteriormente Guzmánde-Peña et al.¹º, utilizando maíz naturalmente contaminado y siguiendo el proceso tradicional de nixtamalización utilizado en Oaxaca, determinaron después de 200 análisis que la nixtamalización destruía el 100% de la aflatoxina cuando el maíz tenía niveles bajos (37 µg AFB1/Kg maíz) y un 97% cuando estaba altamente contaminado (251µg AFB1/Kg de maíz). En ese estudio

Tabla 4. Distribución de la aflatoxina radioactiva durante el proceso de nixtamalización 10. Expresado como desintegración por minuto per kg X 10.6.

| Muestra        | Radiactividad | Porciento del tota |
|----------------|---------------|--------------------|
| Inicial (maíz) | 26.8          | 100                |
| Nejayote       | 7.9           | 29.3               |
| 1º lavada      | 9.2           | 34.2               |
| 2º lavada      | 4.8           | 17.8               |
| 3º lavada      | 0.57          | 2.1                |
| "MASA"         | 4.4           | 16.3               |

se analizaron 10 muestras tanto del nejayote (residuos de agua de cal después de la nixtamalización) como de las aguas de lavado y no fue posible detectar compuestos fluorescentes correspondientes a la aflatoxina. Estos resultados demostraron que el nivel de aflatoxina, si es que existía, estaba por abajo del nivel de detección de la técnica.

Al determinar el pH del nejayote, éste varió de 5 a 12. El valor más alto corresponde a la solución después de la cocción. Estos valores de pH podrían explicar la ausencia de aflatoxinas en la masa, ya que es bien sabido que a valores de pH arriba de 8 y por abajo de 4 se rompen las lactonas que confieren la típica fluorescencia a las aflatoxinas y reduce su toxicidad y cancerigenosidad<sup>11</sup>.

Para determinar si los metabolitos residuales no fluorescentes de aflatoxinas contaminaban la masa, los autores contaminaron artificialmente el maíz con aflatoxina radiactiva y siguieron la distribución de la marca durante el proceso. Se determinó que la masa sólo contenía 4.4 de las 26.8 desintegraciones por minuto (dpm) iniciales que el maíz había registrado (tabla 4). Estos datos demuestran que la mayor parte de la toxina es destruida durante el proceso de nixtamalización<sup>10</sup>.

#### Quinto mito

No obstante los resultados anteriormente descritos, surgió otra elucubración: "cuando la aflatoxina hidrolizada presente en la tortilla contaminada llega al estómago, la acidez del estómago cierra los anillos regenerando la aflatoxina". Al respecto, debemos recordar que las células parietales de las glándulas gástricas del estómago secretan

ácido clorhídrico con un pH de aproximadamente 0.89, de ahí que es muy probable que en un ambiente con estos valores de pH la aflatoxina existente termine por hidrolizarse. Sin embargo, esta última aseveración no es suficiente para terminar con este mito.

Se sabe que un paso necesario para la acción tóxica y carcinogénica de la aflatoxina B1 es su conversión a uno o más metabolitos en varios tejidos de los animales expuestos. Uno de estos es el metabolito conocido como aflatoxicol que es el resultado de la acción de las reductasas de la fracción microsomal hepática. Este compuesto es enzimáticamente reversible y se considera como una forma de reserva de la aflatoxina<sup>12</sup>, pero hasta ahora no se ha demostrado que el aflatoxicol se forme por tratamiento ácido o alcalino.

Debido a las implicaciones que tal teoría podría desatar en el ámbito de la salud publica se consideró de suma importancia desarrollar un estudio que permitiera elucidar la naturaleza química de la aflatoxina B1 remanente en la masa, analizar su relación con los aminoácidos del maíz y su toxicidad en animales. Los resultados hasta ahora obtenidos indican que la nixtamalización es altamente efectiva, que la presencia de la aflatoxina no altera el patrón de aminoácidos ni antes ni después de la nixtamalización<sup>13</sup>.

Los mitos dejan de cumplir su función cuando la ciencia demuestra la realidad de los eventos. Afortunadamente para la sociedad mexicana el área de investigación de aflatoxinas ha sido apoyada desde hace 20 años en la Unidad Irapuato del Cinvestav, donde se sigue generando conocimiento que permitirá determinar cómo las aflatoxinas afectan a nuestros sistemas productivos y a la salud de los mexicanos.

#### Notas

- 1. A. Linsell, en *Environmental carcinogens selected methods of analysis, IARC*, public. 44 (Inter. Agency for Research on Cancer, Francia, 1982).
- 2. J.S. Wang, y J.D. Groopman, Mutation Research 424, 167 (1999).
- 3. F. Trail, N. Mahanti, J. Linz, *Microbiology* **141**, 755 (1995).



Figura 3. Cromatografía de aflatoxinas en capa fina. Las dos primeras manchas fluorescentes corresponden a la aflatoxina B1 extraída de maiz naturalmente contaminado, los siguientes tres espacios son extractos negativos de aflatoxina y las últimas tres munchas fluorescentes, corresponden a la aflatoxina que quedó en masa después de la nixtamalización.

- S. Mergruen, Memorias IV Mesa redonda latinoamericana sobre prevención de pérdidas postcosecha de granos (CONASUPO-BORUCONSA-ANDSA, 1989).
- 5. D. Guzmán-de-Peña, reporte técnico de incidencia de aflatoxinas en maíz ciclo 88-89 a CONASUPO, Gerencia de Inventarios y Control de Calidad (1989).
- 6. R.B.A. Carnaghan et al., Br.J. Cancer 21, 811 (1988).
- 7. J.D. Figueroa, Avance y Perspectiva 18, 149 (1999).
- M. Ulloa-Sosa, H.W. Schroeder, Cereal Chem. 46, 397 (1969).
- 9. M.C. Arriola et al., J.Agric. Food Chem. **36**, 530 (1988).
- 10. D. Guzmán-de-Peña, L. Trudel y G.N. Wogan, Bull. Environ. Contam. Toxicol. 55, 858 (1995).
- 11. F.G. Dollear, en Aflatoxin scientific background, control and implications, Ed. Leo Goldblatt (Academic Press, Nueva York, 1969).
- 12. R.A. Coulombe, en *Mycotoxins and Phytoalexins*, R.P. Sharma, D.K. Shalunke, eds. (CRC Press, Boca Raton, 1991) p. 103.
- 13. A. Verver y Vargas  $\it{et\,al.}$ , Memoria del primer congreso de responsables de proyectos CONACyT (2000).

## Una sinfonía de aromas

Mercedes G. López

De los cinco sentidos que posee el ser humano, desarrollados principalmente para su sobrevivencia, el sentido del olfato es menos apreciado que el sentido de la vista y el oído; sin embargo, el poder detectar una nota aromática tiene el mismo significado que el poder distinguir un color o un sol mayor. Así, como un hermoso soneto está compuesto de notas que pueden transportarnos a lugares inexplorados, algunas veces un conjunto de olores puede producir el mismo efecto.

Se sabe que la nariz humana contiene cerca de 10,000 sensores, los cuales transmiten señales al cerebro cuando un olor o aroma es detectado. Por otra parte, se conoce muy poco de cómo están conectados estos sensores o cómo responden a vapores (olores). ¿Es posible registrar en el cerebro 10,000 señales al mismo tiempo? ¿Se combinan primero estas señales en la nariz y un número más reducido - 100 - es el analizado por el cerebro? Y todavía más importante: ¿cómo responden los receptores a un conjunto de olores?

#### Fisiología del sabor y el olor

Buck y Axel publicaron en 1991 que la detección de los olores es el resultado de la asociación de las "moléculas odoríferas" con las neuronas olfatorias. Estos investigadores clonaron y caracterizaron varios genes que sólo están activos en el epitelio olfatorio, los cuales codifican una familia de receptores olfativos. Estos descubrimientos sugieren que los olores pasan a través de la cilia nasal y

La Dra. Mercedes G. López es investigadora titular del Departamento de Biotecnología y Bioquímica de la Unidad Irapuato del Cinvestav.



son "capturados" por receptores de olores. El alto número de receptores sugiere a su vez que la discriminación entre olores se lleva a cabo a nivel periférico.

En la mayoría de los casos, un olor desagradable está asociado a la descomposición de un alimento, animal o planta. Un olor también puede hacemos evocar toda una situación emocional en un instante. El aroma de una flor, la violeta por ejemplo, sugiere distinción y elegancia. Por otra parte, existen olores que están íntimamente asociados al comportamiento sexual de animales, incluyendo a los humanos por supuesto, como lo son las feromonas. Por otra parte, en algunos países, como Japón, se están utilizando algunos aromas específicos para resolver problemas fisiológicos, así como para motivar a trabajadores durante la jornada laboral.

# ¿Cómo se mide o interpreta una sensación?

El sabor o aroma de un material no puede ser directamente medido con una herramienta analítica; sin embargo, la posibilidad de acoplar este tipo de herramienta a los detectores biológicos tradicionales —lenguas o narices— ha abierto todo un nuevo horizonte en el campo de la investigación de los aromas y sabores, así como de su percepción y las emociones ligadas a ellos¹. El humano basa gran parte de su vida cotidiana en el placer y la seguridad de los alimentos que consume diariamente. El aroma juega un papel indiscutible en la elección y aceptación de muchos de nuestros alimentos. Si un aroma indeseable es percibido o no corresponde a las expectativas del consumidor, éste es rechazado. Otros factores que influyen en el rechazo o aceptación de un alimento son las caracteríasticas culturales, así como la edad y el sexo.

#### Tequilas

Las plantas de agave se cultivan en México para la elaboración de un gran número de bebidas alcohólicas como mezcal, pulque, bacanora y tequila. Agave tequilana Weber var. azul es la más cultivada entre todas las especies de agave debido a que es la materia prima indispensable para la producción de tequila (NOM006-SCFI-1993). A. tequilana es cultivada principalmente en los estados de Jalisco, Guanajuato, Tamaulipas, Nayarit y Michoacán. Aproximadamente un 65 % de la producción de tequila es exportada a los Estados Unidos.

El proceso de maduración de las plantas de A. tequilana toma entre 8 y 12 años; las piñas (corazón) se cocen en hornos de ladrillo por 32 h. a 100 °C, luego el jugo de agave es fermentado con Saccharomyces cereviceae por 24 h y, finalmente, a través de una doble destilación, se obtiene el tequila conocido como tequila blanco. El tequila blanco puede ser reposado de tres a doce meses para obtener tequila reposado o añejado de 1' a 5 años para producir tequila añejo. Después del proceso de reposo o de añejamiento la bebida es diluida con agua desmineralizada para ajustar su contenido alcohólico a 30 o 40 % en volumen de etanol.

Muy pocos estudios se han realizado sobre el sabor y aroma de los tequilas: en 1996, Benn y Peppard² realizaron

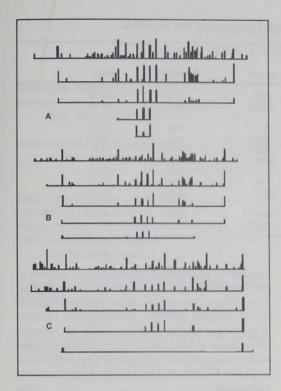



Figura 1. Aromagramas de tequila blanco (A), tequila reposado (B) y tequila añejo (C).

uno de los primeros estudios más detallados sobre los compuestos saborizantes de varios tequilas, así como los análisis sensoriales correspondientes. En 1999, López<sup>3</sup> publicó los resultados de estudios hechos sobre algunos de los aromas más intensos de los tequilas. Sin embargo, los tequilas utilizados en estos estudios fueron comprados en tiendas y licorerías y no se registró el origen ni el proceso específico utilizado para su elaboración, ni el tipo de reposado o añejamiento. Más tarde se realizó un estudio con un cromatógrafo de gases acoplado a un olfatómetro u un analizador de la información, tanto química como psicofísica; se utilizaron tequilas de tipo blanco, reposado añejo y los compuestos volátiles fueron obtenidos por una extracción simple y olfateados en un equipo de GC-O computarizado. Para el análisis conocido como charm (Combined Hedonic Aroma Response Measurement) se utilizó una serie de diluciones de un quinto (1/5, 1/25, 1/125, 1/625 v 1/3125). El instrumento mencionado permite definir las notas de cada descriptor, así como su

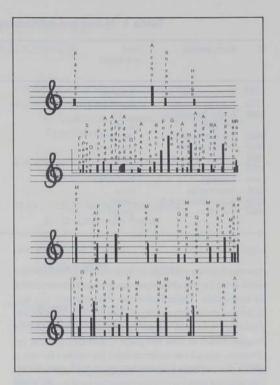



Figura 2. Adagio bianco.

intensidad, lo que a su vez permite establecer una relación entre la información química y la percepción de cada uno de los aromas en una muestra. En las figuras 1 y 2 se muestra el tipo de información generada en este análisis de GC-O; la información se presenta en forma de gráfica y se conoce como aromagrama. Los aromagramas en estas figuras corresponden a muestras de tequila blanco, reposado y añejo; además, se presentan los cambios percibidos por el detector biológico (una persona) a diferentes concentraciones de la muestra.

En estos aromagramas se pueden observar diferencias cualitativas y cuantitativas. Se encontraron 68 aromas en tequila blanco, 79 en reposado y 64 en añejo. Muchos de estos aromas fueron comunes a los tres tequilas: 49 se encontraron en todos los tequilas, otros 16 sólo fueron comunes al tequila blanco y reposado y otros 8 a los tequilas reposado y añejo. También se observó que a medida que el tequila se reposa o añeja, se generan aro-

Tabla I. Notas aromáticas más intensas en los teguilas.

| KI   | Compuestos        | Nota<br>Aromática |        | Valores (charm) |       |  |
|------|-------------------|-------------------|--------|-----------------|-------|--|
|      | Alonidica         | Alorhalica        | Blanco | Reposado        | Añejo |  |
| 1030 | Desconocido       | Solvente          | 748    | 845             | 2842  |  |
| 1200 | Butanol, 3-metil  | Alcohol           | 2407   | 2065            | 6515  |  |
| 1659 | Acido decanoico   |                   |        |                 |       |  |
|      | etil ester        | Grasa             | 267    | 400             | 357   |  |
| 1809 | Feniletii acetato | Tepache           | 1564   | 2415            | 3035  |  |
| 1862 | Desconocido       | Medicinal         | 880    | 1501            | 2221  |  |
| 1906 | Feniletii alcohol | Dulce             | 6083   | 4560            | 7771  |  |
| 1953 | Desconocido       | Plástico          |        | 1644            | 16956 |  |
| 2166 | Eugenol           | Medicinal         | 941    | 1498            | 2403  |  |
| 2201 | Terpenoide        | Pollo             | 1259   | 2241            | 4733  |  |
| 2266 | Acido decanoico   | Grasa             |        | 411             | 2102  |  |
| 2555 | Vainillin         | Vainilla          | 1959   | 3641            | 5510  |  |

mas mucho más volátiles; es muy clara la diferencia que existe entre los tres aromagramas en los primeros minutos de inhalación. Específicamente, tres aromas son responsables del aroma del tequila blanco, seis del reposado y sólo dos del añejo. Se podría pensar que el aroma del tequila blanco es más complejo que el de los otros; no obstante, cuando se determinaron los valores de olor o aroma charm (Tabla 1) se observó que éstos fueron mucho más intensos para los aromas presentes en el tequila añejo que para los otros dos tipos de tequilas. La tabla 1 contiene sólo los aromas más intensos (1/625 y 1/3125) encontrados en los tres tequilas, así como los descriptores correspondientes a cada uno de ellos, además del índice de Kovats, que es otro parámetro de identificación de aromas<sup>5</sup>.

En este contexto, el tequila podría ser el nombre de un adagio mexicano que diera la vuelta al mundo, como actualmente sucede con la bebida alcohólica misma. Y al igual que una melodía a un volumen muy alto puede ser totalmente desagradable, lo mismo puede suceder con un volumen alto de tequila.

#### Perspectivas

La técnica analítica de GC-O es hoy en día la más utilizada para estudiar problemas relacionados con la generación de componentes aromáticos agradables o desagradables, sobre todo en alimentos, ya sean éstos sólidos o líquidos y durante cualquier etapa de su elaboración y alma-

cenamiento. Es importante mencionar que también es muy utilizada en la producción de muchos otros productos, como perfumes, por ejemplo, así como en la investigación de compuestos volátiles generados por plantas, microorganismos y en el desarrollo de tumores cancerígenos: se han podido diagnosticar enfermedades a partir de la detección de las emanaciones volátiles que se generan únicamente durante la manifestación de una enfermedad.

#### Notas

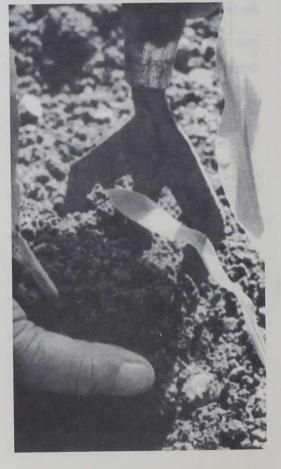
- 1. C.R. Stampanoni, Lebensm. Technol. 234 (1992).
- S.M. Benn y T.L. Peppard, J. Agric. Food Chem. 44, 557 (1996).
- 3. M.G. López, en Flavor Chemistry of Ethnic Foods, F. Shahidi y J.C. Ho, Eds. (Plenum, 1999) p. 211.
- 4. T.E. Acree, Anal. Chem. 69, 170A (1997).
- 5. M.G. López y J.P. Dufour, en Gas Chromatography Olfactometry. The State of the Art, J.V. Leland et al., Eds. (American Chemical Society Series 2001) p. 62.

#### Indice del volumen 20 Indice de materias

| Biología celular<br>Biofísica<br>J.M. Méndez A.                             | 211 | El suelo y sus habitantes microbianos:<br>consideraciones ecológicas<br>E. Valencia Cantero y J.J. Peña | 401    |
|-----------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|--------|
| El asombroso reino de los hongos                                            | 275 | Cabriales                                                                                               |        |
| J. Ruiz Herrera                                                             |     | El ecosistema de granos almacenados<br>M. Vázquez Arista                                                | 407    |
| Biotecnología e ingeniería<br>genética de plantas                           |     | Mitos y realidades de la aflatoxinas                                                                    | 415    |
| Veinte años de hacer ciencia y tecnología y de formar líderes científicos   | 339 | D. Guzmán de Peña                                                                                       |        |
| O. Paredes López                                                            |     | Una sinfonía de aromas<br>M.G. López                                                                    | 423    |
| El programa de posgrado en biotecnología de plantas                         | 345 |                                                                                                         |        |
| O. Martínez de la Vega                                                      |     | Ciencias marinas Desafios ambientales en el siglo XXI                                                   | 3      |
| Los virus: cómplices para descifrar procesos moleculares en plantas         | 349 | L. Capurro                                                                                              |        |
| J.C. Vega Arrequín y                                                        |     | Ulumpana Manas han fan in in in                                                                         | 001    |
| R. Rivera Bustamante                                                        |     | Huracanes, tifones, baguíos, willy-willies y ciclones                                                   | 221    |
| Manipulando la sexualidad vegetal:<br>confesiones de un "voyeur" de plantas | 357 | L. Capurro                                                                                              |        |
| J.P. Vielle Calzada                                                         |     | Algas en la botica<br>Y. Freile Pelegrin                                                                | 283    |
| Producción de vacunas y productos                                           | 365 |                                                                                                         |        |
| farmacéuticosen plantas transgénicas<br>M.A. Gómez Lim                      |     | Alimentando al mundo, envenenando<br>al planeta; eutrofiización y calidad del agua<br>N. Aranda Cicerol | 293    |
| Alcamidas en plantas; distribución e importancia                            | 377 | N. Aldridd Ciceron                                                                                      |        |
| J. Molina Torres y Abraham Garcí                                            | a   | Computación                                                                                             |        |
| Chávez                                                                      |     | Diagonalización y computabilidiad                                                                       | 139    |
| El citoesqueleto en plantas durante                                         | 389 | G. Morales Luna                                                                                         | 3.70.0 |
| la mitosis y la citocinesis<br>M. Segura Nieto                              |     | Potencial didáctico del software dinámico<br>L.M. Santos Trigo                                          | 247    |
| Bacterias promotoras del crecimiento de plantas: agro-biotecnología         | 395 |                                                                                                         |        |
| R. Jiménez Delgadillo,                                                      |     | Desarrollo institucional                                                                                |        |
| G. Virgen Calleros,                                                         |     | Departamento de Matemática Educativa:                                                                   | 17     |
| S. Tabares Franco y U. Olalde                                               |     | 25 años de investigación                                                                                |        |
| Portugal                                                                    |     | F. Hitt Espinoza                                                                                        |        |

| Informe de labores 2000<br>A. Martínez Palomo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 159   | Juventud y filantropía: el premio al investigador joven  M. A. Paz Sandoval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 319 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| La biología y las ciencias básicas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 333   | W. A. Paz sandovai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| La biología y las ciencias básicas<br>K. Dill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 555   | El programa de posgrado en biotecnología de plantas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 345 |
| Veinte años de hacer ciencia y tecnología<br>y de formar líderes científicos<br>O. Paredes López                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 339   | O. Martínez de la Vega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| O. raiedes Lopez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Electrónica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Premio Nobel de Física 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37  |
| Distinciones académicas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | M. Meléndez Lira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Premio Nacional de Ciencias y Artes 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Premio de Investigación AMC 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52    | The state of the s |     |
| Premio Nobel de Fisiología 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31    | Física                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7 |
| Premio Nobel de Física 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37    | Premio Nobel de Física 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37  |
| Premio Nobel de Química 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43    | M. Meléndez Lira                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Plásticos que conducen electricidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | M.D. Carvajal Tinoco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40  |
| Documentos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150   | W.D. Carvajar Imoco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| Informe de labores 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 159   | Física en el detector ALICE-LHC del CERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75  |
| A. Martínez Palomo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | L.M. Montaño Zetina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | J.W. Cronin y la naturaleza del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127 |
| Ecología                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | descubrimiento científico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/ |
| Desafíos ambientales en el siglo XXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3     | C. Chimal y G. Herrera Corral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| L. Capurro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | C. Chimar y G. Hellera Contai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Residuos peligrosos: grave riesgo ambiental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 151   | La prioridad en los descubrimientos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107 |
| G. Ruiz Aguilar, J.M. Fernández                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | O. Rojo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Sánchez, R. Rodríguez Vázquez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Biofísica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 211 |
| Alimentando al mundo, envenenando                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 293   | J.M. Méndez A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| al planeta: eutrofización y calidad del agua  N. Aranda Cirerol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| The first of the f |       | Fisiología                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Recordando a don Juan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47  |
| Educación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | J. Muñoz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| La confección del doctorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| en la Real y Pontificia Universidad de México<br>J.E.S. Valadez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Premio Nobel de Fisiología 2000<br>J.A. Arias Montaño y U. García<br>Hernández                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31  |
| Potencial didáctico del software dinámico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 247   | nemanaez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| en el aprendizaje de las matemáticas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.77 | Los origenes de la conciencia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55  |
| L.M. Santos Trigo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | J. Alvarez Leefmans y C. Chimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Un camino marcado por la curiosidad,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 313   | Fisiopatología de los canales iónicos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83  |
| la obstinación y la casualidad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | sensibles al voltaje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| E. Juaristi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | A. Vega Hernández y R. Félix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |

| La experiencia consciente y la integración de la realidad  C. Chimal | 259 | Potencial didáctico del software<br>dinámico en el aprendizaje de las<br>matemáticas<br>L.M. Santos Trigo | 247 |
|----------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------|-----|
| Foro                                                                 |     |                                                                                                           |     |
| La prioridad en los descubrimientos  O. Rojo                         | 107 | Matemáticas Diagonalización y computabilidad G. Morales Luna                                              | 139 |
| La biología y las ciencias básicas<br>K. Dill                        | 333 | ¿Qué pasa con el infinito?<br>C. Imaz                                                                     | 305 |
| Vinculación de la ciencia y la tecnología                            | 325 |                                                                                                           |     |
| con la industria y la sociedad  A. Morales Acevedo                   |     | Matices El graffito; ansia humana de comunicarse M. Cereijido                                             | 191 |
| Ingeniería eléctrica                                                 |     | A través del cristal                                                                                      | 330 |
| FACTS: soluciones modernas para la industria eléctrica               | 235 | J.G. Nicholls                                                                                             | 330 |
| I. Coronado, P. Zúñiga,                                              |     |                                                                                                           |     |
| J.M. Ramírez                                                         |     | Neurociencias Premio Nobel de Fisiología 2000  J.A. Arias Montaño y                                       | 31  |
| Libros y revistas                                                    |     | U. García Hernández                                                                                       |     |
| Origins of the modern mind de M. Donald                              | 65  |                                                                                                           |     |
| L. Moreno Armella                                                    |     | Los orígenes de la conciencia  J. Alvarez Leefmans y C. Chimal                                            | 55  |
| Milenio de S. Jay Gould<br>M.A. Pérez Angón                          | 69  | La experiencia consciente y la integración de la realidad                                                 | 259 |
| New Scientist cumple 45 años<br>C. Chimal                            | 181 | C. Chimal                                                                                                 |     |
| La nuca de Houssay de M. Cereijido                                   | 197 | Nombramientos                                                                                             |     |
| R. Pérez Tamayo                                                      |     | Ma. D. Cervera Montejano Jefa del Departamento de Ecología Humana                                         | 53  |
| Las ciencias exactas en México                                       | 203 | C. Ruiz Suárez                                                                                            |     |
| M.A. Pérez Angón                                                     |     | Jefe del Departamento de Física Aplicada<br>M.A. Meraz Ríos                                               | 54  |
| Experimentos Impactantes I                                           | 271 | Secretario de planeación                                                                                  | 245 |
| R. Baquero                                                           |     | M.A. Olvera Novoa  Jefe del Departamento de Recursos del Mar                                              | 246 |
| Matamática advantiva                                                 |     |                                                                                                           |     |
| Matemática educativa  Departamento de Matemática Educativa:          | 17  | Perfiles de investigación                                                                                 |     |
| 25 años de investigación                                             |     | Recordando a don Juan                                                                                     | 47  |
| F. Hitt Espinoza                                                     |     | J. Muñoz                                                                                                  |     |


| Política científica                        |         | Carbajal Tinoco, M.D.                 |       |
|--------------------------------------------|---------|---------------------------------------|-------|
| La prioridad en los descubrimientos y su   | 107     | Premio Nobel de Química 2000          | 43    |
| relación con la infraestructura científica |         |                                       |       |
| O. Rojo                                    |         | Cereijido, M.                         |       |
|                                            |         | El graffito: ansia humana de          |       |
| La biología y las ciencia básicas          | 333     | comunicarse                           | 191   |
| K. Dill                                    |         |                                       |       |
|                                            |         | Chimal, C.                            |       |
| Vinculación de la ciencia y la             |         | Los orígenes de la conciencia         | 55    |
| tecnología con la industria y la sociedad  | 325     | J.W. Cronin y la naturaleza del       |       |
| A. Morales Acevedo                         |         | descubrimiento científico             | 127   |
|                                            |         | New Scientist cumple 45 años          | 181   |
|                                            |         | La experiencia consciente y la        | 11000 |
| Química                                    |         | integración de la realidad            | 259   |
| Premio Nobel de Química 2000               | 43      | i ilogiación acia icalidad            | 207   |
| M.D. Carvajal Tinoco                       |         | Coronado, I.                          |       |
|                                            |         | FACTS: soluciones modernas para       |       |
| Un camino marcado por la curiosidad,       | 313     | la industria electrónica              | 235   |
| la obstinación y la casualidad             |         | id il iddsilid electionica            | 200   |
| E. Juaristi                                |         | D                                     |       |
|                                            |         |                                       |       |
| Juventud y filantropía: el premio al       | 319     | Dill, K.                              | 222   |
| investigador joven                         |         | La biología y las ciencias básicas    | 333   |
| M. A. Paz Sandoval                         |         |                                       |       |
|                                            |         | F                                     |       |
|                                            |         | Félix, R.                             |       |
| Indice de Autores                          |         | Fisiopatología de los canales iónicos |       |
| 11100 00 1010                              |         | sensibles al voltaje                  |       |
| A                                          |         | 19                                    | 83    |
| Alvarez Leefmans, J.                       |         | Fernández Sánchez, J.M                |       |
|                                            | 55      | Residuos pellgrosos: grave riesgo     |       |
| Los orígenes de la conciencia              | 33      | ambiental                             | 151   |
| Armada Circust NA                          |         |                                       |       |
| Aranda Cirerol, M.                         |         | Freile Pelegrín, Y.                   |       |
| Alimentando al mundo,                      |         | Algas en la "botica"                  | 283   |
| envenenando al planeta:                    | 000     |                                       |       |
| eutrofización y calidad del agua           | 293     | G                                     |       |
|                                            |         | García Chávez, A.                     |       |
| Arias Montaño, J.A.                        | 6.5     | Alcamidas en plantas: distribución    | -     |
| Premio Nobel de Fisiología 2000            | 31      | e importancia                         | 377   |
|                                            |         |                                       |       |
| В                                          |         | García Hernández, U.                  |       |
| Baquero, R.                                | Sec. 20 | Premio Nobel de Fisiología 2000       | 31    |
| Experimentos Impactantes I (resena)        | 271     |                                       |       |
|                                            |         | Gómez Lim, M.A.                       |       |
| C                                          |         | Producción de vacunas en plantas      |       |
| Capurro, L.                                |         | transgénicas                          | 365   |
| Desafíos ambientales en el siglo XXI       | 3       |                                       |       |
| Huracanes, tifones, baguíos,               |         | Guzmán de Peña, D.                    |       |
| willy - willies y ciclones                 | 221     | Mitos y realidades de las aflatoxinas | 415   |

| H                                        |      | Morales Acevedo, A.                                       |      |
|------------------------------------------|------|-----------------------------------------------------------|------|
| Herrera Corral, G.                       |      | Vinculación de la ciencia y la                            |      |
| J.W. Cronin y la naturaleza del          |      | tecnología con la industria y la                          |      |
| descubrimiento científico                | 127  | sociedad                                                  | 325  |
| Hitt Espinoza, F.                        |      | Morales Luna, G.                                          |      |
| Departamento de Matemática               |      | Diagonalización y computabilidad                          | 139  |
| Educativa: 25 años de                    |      |                                                           |      |
| investigación                            | 17   | Moreno Armella, L.                                        |      |
| an songaston                             | 17   | Cognición, mediación y tecnología                         |      |
| 1,J                                      |      | (reseña)                                                  | 65   |
| Imaz, C.                                 |      | NA=== 1                                                   |      |
| ¿Qué pasa con el infinito?               | 305  | Muñoz, J.  Recordando a don Juan                          | 47   |
| odd palacon chilinio                     | 300  | Recordando a don Juan                                     | 47   |
| Jiménez Delgadillo, R.                   |      | N,O                                                       |      |
| Bacterias promotoras del                 |      | Nicholls, J.G.                                            |      |
| crecimiento de plantas:                  |      | A través del cristal                                      | 330  |
| agro-biotecnología                       | 395  |                                                           |      |
|                                          |      | Olalde Portugal, U.                                       |      |
| Juaristi, E.                             |      | Bacterias promotoras del                                  |      |
| Un camino marcado por la                 |      | crecimiento de plantas:                                   | -222 |
| curiosidad, la obstinación y la          |      | agro-biotecnología                                        | 395  |
| casualidad                               | 313  | D.                                                        |      |
|                                          |      | Paredes López, O.                                         |      |
| L                                        |      | Veinte años de hacer ciencia                              |      |
| López, M.G.                              |      | y tecnología y de formar líderes                          |      |
| Una sinfonía de aromas                   | 421  | científicos                                               | 339  |
|                                          |      | Clerinincos                                               | 339  |
| M                                        |      | Paz Sandoval, M. A.                                       |      |
| Martínez de la Vega, O.                  |      | Juventud y filantropia; el premio                         |      |
| El programa de posgrado en               |      | al investigador joven                                     | 319  |
| biotecnología de plantas                 | 345  |                                                           |      |
| M-4' D-1 A                               |      | Peña Cabriales, J.                                        |      |
| Martínez Palomo, A.                      | 150  | El suelo y sus habitantes microbianos:                    |      |
| Informe de labores 2000                  | 159  | consideraciones ecológicas                                | 401  |
| ** ** **                                 |      | Pérez Angón, M.A.                                         |      |
| Meléndez Lira, M.                        | 0.7  | Milenio (reseña)                                          | 69   |
| Premio Nobel de Física 2000              | 37   | Las ciencias exactas en México                            |      |
|                                          |      | (reseña)                                                  | 203  |
| Méndez A., J.M.                          | 011  |                                                           |      |
| Biofísica                                | 211  | Pérez Tamayo, R.                                          |      |
| Moling Torres                            |      | La nuca de Houssay (reseña)                               | 197  |
| Molina Torres, J.                        |      |                                                           |      |
| Alcamidas en plantas: distribución       | 277  | D                                                         |      |
| e importancia                            | 377  | R                                                         |      |
| Montaño Zotina I M                       |      | Ramírez, J.M.                                             |      |
| Montaño Zetina, L.M.                     | 1 75 | FACTS: soluciones modernas para<br>la industria eléctrica | 025  |
| Física en el detector ALICE-LHC del CERI | V 70 | id industria electrica                                    | 235  |

| Rivera Bustamante, R. Los virus: cómplices para descifrar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | Vega Arrequín, J.C. Virus cómplices para descifrar |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------|--------|
| procesos moleculares en plantas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 349  | procesos moleculares en plantas                    | 349    |
| Rodríguez Vázquez, R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Vega Hernández, A.                                 |        |
| Residuos peligrosos: grave riesgo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Fisiopatología de los canales lónicos              |        |
| ambiental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 151  | sensibles al voltaje                               | 83     |
| Rojo, O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Vielle Calzada, J.P.                               |        |
| La prioridad en los descubrimientos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Manipulando la sexualidad vegetal:                 |        |
| y su relación con la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2002 | confesiones de un "voyeur" de plantas              | 357    |
| infraestructura científica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107  |                                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Virgen Calleros, G.                                |        |
| Ruíz Aguilar, G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Bacterias promotoras del                           |        |
| Residuos peligrosos: grave riesgo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 252  | crecimiento de plantas:                            |        |
| ambiental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 151  | agro-biotecnolgía                                  | 395    |
| Ruíz Herrera, J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Z                                                  |        |
| El asombroso reino de los hongos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 275  | Zúñiga, P.                                         |        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | FACTS: soluciones modernas para                    |        |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | la industria eléctrica                             | 235    |
| Santos Trigo, L.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | id il iddsilid electrica                           | 200    |
| Potencial didáctico del sofware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                    |        |
| dinámico en el aprendizaje de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Indian anamántica                                  |        |
| las matemáticas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 247  | Indice onomástico                                  |        |
| Segura Nieto, M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | A                                                  |        |
| El citoesqueleto en plantas durante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Aceves Ruiz, J.                                    |        |
| la mitosis y la citocinesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 389  | Premio Nacional de Ciencias y Artes                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 2000                                               | 51     |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                    |        |
| Tabares Franco, S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Adem, J.                                           |        |
| Bacterias promotoras del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Premio Nacional de Ciencias y Artes                | 51     |
| crecimiento de plantas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222  |                                                    |        |
| agro-bactecnología                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 395  | Aréchiga, H.                                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Premio Nacional de Ciencias y Artes                | 51     |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                    |        |
| Valadez, J.E.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | C Marie Marie Marie                                |        |
| La confección del doctorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Candela Martín, Ma. A.                             |        |
| en la Real y Pontificia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7  | Ingreso AMC                                        | 114    |
| Universidad de México                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97   |                                                    |        |
| Valencia Cantero, E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Cantoral Uriza, R.                                 | 20.0   |
| El suelo y sus habitantes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | Ingreso AMC                                        | 114    |
| microbianos: consideraciones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 1 (20 m) 1 (1 m) 1 (1 m)                           |        |
| ecológicas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 401  | Casas Campillo, C.                                 |        |
| A CONTRACTOR OF THE PARTY OF TH |      | Premio Nacional de Ciencias y Artes                | 51     |
| Vázquez Arista, M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                    |        |
| El ecosistema de granos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Castilla Valdez, H.                                | 100000 |
| almacenados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 407  | Ingreso AMC                                        | 113    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                    |        |

| Cerbón, J.                                              |     | Martínez Soriano, J.P.R.                     |          |
|---------------------------------------------------------|-----|----------------------------------------------|----------|
| Premio Nacional de Ciencias y Artes                     | 51  | Ingreso AMC                                  | 114      |
| Cereijido, M.                                           |     | Massieu, G.                                  |          |
| Premio Nacional de Ciencias y Artes                     | 51  | Premio Nacional de Ciencias y Artes          | 51       |
| Cervera Montejano, Ma. D.                               |     | Méndez Nonell, M.                            |          |
| Jefa del Departamento de                                |     | Secretario de Planeación                     | 245      |
| Ecología Humana                                         | 53  | Meraz Ríos, M.A.                             |          |
| Cortés González, V.R.                                   |     | Secretario de Planeación                     | 245      |
| Concurso de fotografía                                  | 117 |                                              |          |
|                                                         |     | Micha Zaga, E.                               | 110      |
| D                                                       |     | Ingreso AMC                                  | 113      |
| De Coss Gómez, R.H. Ingreso AMC                         | 113 | Mote Rubio, J.L.                             |          |
| Ingleso AIVIC                                           | 110 | Concurso de fotografía                       | 121      |
| De Lafuente, V.H.                                       |     |                                              |          |
| Concurso de fotografía                                  | 115 | O<br>Olalde Portugal, V.                     |          |
|                                                         |     | Ingreso AMC                                  | 114      |
| G<br>Gitler, S.                                         |     |                                              |          |
| Premio Nacional de Ciencias y Artes                     | 51  | Olvera Novoa, M.A.                           |          |
| 110/110/1100/01/01/02 01/11/00 7/11/00                  | 91  | Jefe del Departamento de Recursos<br>del Mar | 246      |
| н                                                       |     | derividi                                     | 240      |
| Herrera Estrella, A.                                    |     | P                                            |          |
| Premio de Investigación AMC 2000                        | 52  | Ponce Noyola, Ma. T.                         |          |
| J                                                       |     | Ingreso AMC                                  | 114      |
| Joseph Nathan, P.                                       |     | R                                            |          |
| Premio Nacional de Ciencias y Artes                     | 51  | Ramírez Rosales, Ma. A.                      |          |
| Juaristi, E.                                            |     | Concurso de fotografía                       | 120      |
| Premio Nacional de Ciencias y Artes                     | 51  |                                              |          |
| 1                                                       |     | Raya Pérez, J.C.  Concurso de fotografía     | 119      |
| López López, M.                                         |     | Concuiso de lologidila                       | 117      |
| Ingreso AMC                                             | 113 | Rendis Ruiz, R.N.                            |          |
|                                                         |     | Concurso de fotografía                       | 118      |
| M                                                       |     | N                                            |          |
| Manko, V.S. Ingreso AMC                                 | 113 | Rivera Carmona, J.J.  Concurso de fotografía | 116, 123 |
| III I I I I I I I I I I I I I I I I I                   | 110 | concesso do lologíalia                       | 110, 120 |
| Maldonado López, L.A.                                   |     | Rodríguez Vázquez, R.                        |          |
| Ingreso AMC                                             | 113 | Ingreso AMC                                  | 114      |
| Mantines Balance A                                      |     | Rojkind, M.                                  |          |
| Martínez Palomo, A. Premio Nacional de Ciencias y Artes | 51  | Premio Nacional de Ciencias y Artes          | 51       |
| Herrio Nacional de Ciencias y Alles                     | 31  | 77,1130                                      |          |

| Rosenblueth, A.                                            |     |
|------------------------------------------------------------|-----|
| Premio Nacional de Ciencias y Artes                        | 51  |
| Rudomín, P. Premio Nacional de Ciencias y Artes            | 51  |
| Ruíz Herrera, J.  Premio Nacional de Ciencias y Artes      | 51  |
| Ruíz Suárez, C.  Jefe del Departamento de Física  Aplicada | 54  |
| S                                                          |     |
| Sánchez Colón, G.<br>Ingreso AMC                           | 113 |
| Silva Olmedo, F.<br>Concurso de fotografía                 | 122 |
| Sosa Villanueva, V.J.<br>Ingreso AMC                       | 113 |
| Suaste Gómez, E.<br>Ingreso AMC                            | 113 |
| U,V                                                        |     |
| Uribe, L.D.  Concurso de fotografía                        | 114 |
| Villarreal Rodríguez, R.H.                                 |     |
| Ingreso AMC                                                | 113 |



# Maestría, Doctorado y Posdoctorado

Partículas elementales Fisicamatemática Física Nuclear Gravitación

Materia condensada Física estadística Física médica Astrofísica

Centro de Investigación y de Estudios Avanzados del IPN

# Departamento de Física

Examen de admisión a maestría, doctorado directo y cursos propedéuticos el 4 de febrero y el 29 de abril de 2002

Inscripciones al doctorado en cualquier época del año.

Coordinación de admisión A.P. 14740, 07000 México, D.F. Tel: (52-5) 747 38 32 Fax: (52-5) 747 38 38 admision@fis.cinvestav.mx http://www.fis.cinvestav.mx

Becas de CONACyT

0

# Mexican Symposium on Medical Physics

# Cinvestav South Campus

March 20 to 22, 2002 Mexico City, Mexico

#### **General Topics**

Detectors for imaging applications
Dosimetry
Magnetic resonance imaging
Mammography
Nuclear medicine
Phase contrast radiography
Radiotherapy

#### Organizing Committee

Maria-Ester Brandan, IFUNAM
Maricarmen Franco, SOFIMED
Gerardo Herrera Corral, Cinvestav
Luis Manuel Montaño Zetina, Cinvestav
Miguel Ángel Pérez Angón, Cinvestav
Miguel Ángel Pérez Pastenes, AMFM

#### Sponsors

División de Física Médica de la Sociedad Mexicana de Física Centro de Investigación y de Estudios Avanzados del IPN, Cinvestav Dirección General de Estudios de Posgrado, UNAM Instituto de Física, UNAM Consejo Nacional de Ciencia y Tecnologia, CONACyT

#### Further information

Luis Manuel Montaño Zetina Physics Department, Cinvestav Phone: +(52) 5747 3839 Fax: +(52) 5747 7098 Imontano@fis.cinvestav.mx vismfm@fis.cinvestav.mx

Contributions for oral and poster presentations are welcome and the participation of garaduated students is encouraged.

Information can be found in the web page:

http://www.fis.cipyestay.mx/~vismfm